Files
EasyFace/tests/trainers/test_face_detection_scrfd_trainer.py
2023-03-02 11:17:26 +08:00

146 lines
5.7 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import glob
import os
import shutil
import tempfile
import unittest
import torch
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.metainfo import Trainers
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.config import Config
from modelscope.utils.constant import ModelFile
from modelscope.utils.test_utils import DistributedTestCase, test_level
def _setup():
model_id = 'damo/cv_resnet_facedetection_scrfd10gkps'
# mini dataset only for unit test, remove '_mini' for full dataset.
ms_ds_widerface = MsDataset.load('WIDER_FACE_mini', namespace='shaoxuan')
data_path = ms_ds_widerface.config_kwargs['split_config']
train_dir = data_path['train']
val_dir = data_path['validation']
train_root = train_dir + '/' + os.listdir(train_dir)[0] + '/'
val_root = val_dir + '/' + os.listdir(val_dir)[0] + '/'
max_epochs = 1 # run epochs in unit test
cache_path = snapshot_download(model_id)
tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
return train_root, val_root, max_epochs, cache_path, tmp_dir
def train_func(**kwargs):
trainer = build_trainer(name=Trainers.face_detection_scrfd,
default_args=kwargs)
trainer.train()
class TestFaceDetectionScrfdTrainerSingleGPU(unittest.TestCase):
def setUp(self):
print(('SingleGPU Testing %s.%s' %
(type(self).__name__, self._testMethodName)))
self.train_root, self.val_root, self.max_epochs, self.cache_path, self.tmp_dir = _setup(
)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
def _cfg_modify_fn(self, cfg):
cfg.checkpoint_config.interval = 1
cfg.log_config.interval = 10
cfg.evaluation.interval = 1
cfg.data.workers_per_gpu = 3
cfg.data.samples_per_gpu = 4 # batch size
return cfg
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer_from_scratch(self):
kwargs = dict(cfg_file=os.path.join(self.cache_path, 'mmcv_scrfd.py'),
work_dir=self.tmp_dir,
train_root=self.train_root,
val_root=self.val_root,
total_epochs=self.max_epochs,
cfg_modify_fn=self._cfg_modify_fn)
trainer = build_trainer(name=Trainers.face_detection_scrfd,
default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_finetune(self):
pretrain_epoch = 640
self.max_epochs += pretrain_epoch
kwargs = dict(cfg_file=os.path.join(self.cache_path, 'mmcv_scrfd.py'),
work_dir=self.tmp_dir,
train_root=self.train_root,
val_root=self.val_root,
total_epochs=self.max_epochs,
resume_from=os.path.join(self.cache_path,
ModelFile.TORCH_MODEL_BIN_FILE),
cfg_modify_fn=self._cfg_modify_fn)
trainer = build_trainer(name=Trainers.face_detection_scrfd,
default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(pretrain_epoch, self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipIf(not torch.cuda.is_available()
or torch.cuda.device_count() <= 1, 'distributed unittest')
class TestFaceDetectionScrfdTrainerMultiGpus(DistributedTestCase):
def setUp(self):
print(('MultiGPUs Testing %s.%s' %
(type(self).__name__, self._testMethodName)))
self.train_root, self.val_root, self.max_epochs, self.cache_path, self.tmp_dir = _setup(
)
cfg_file_path = os.path.join(self.cache_path, 'mmcv_scrfd.py')
cfg = Config.from_file(cfg_file_path)
cfg.checkpoint_config.interval = 1
cfg.log_config.interval = 10
cfg.evaluation.interval = 1
cfg.data.workers_per_gpu = 3
cfg.data.samples_per_gpu = 4
cfg.dump(cfg_file_path)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_multi_gpus_finetune(self):
pretrain_epoch = 640
self.max_epochs += pretrain_epoch
kwargs = dict(cfg_file=os.path.join(self.cache_path, 'mmcv_scrfd.py'),
work_dir=self.tmp_dir,
train_root=self.train_root,
val_root=self.val_root,
total_epochs=self.max_epochs,
resume_from=os.path.join(self.cache_path,
ModelFile.TORCH_MODEL_BIN_FILE),
launcher='pytorch')
self.start(train_func, num_gpus=2, **kwargs)
results_files = os.listdir(self.tmp_dir)
json_files = glob.glob(os.path.join(self.tmp_dir, '*.log.json'))
self.assertEqual(len(json_files), 1)
for i in range(pretrain_epoch, self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
if __name__ == '__main__':
unittest.main()