mirror of
https://gitcode.com/gh_mirrors/eas/EasyFace.git
synced 2025-12-30 04:52:28 +00:00
142 lines
5.7 KiB
Python
142 lines
5.7 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.config import Config
|
|
from modelscope.utils.constant import ModelFile, Tasks
|
|
from modelscope.utils.hub import read_config
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestFinetuneFaqQuestionAnswering(unittest.TestCase):
|
|
param = {
|
|
'query_set': ['给妈买的,挺好的,妈妈喜欢。'],
|
|
'support_set': [{
|
|
'text': '挺好的,质量和服务都蛮好',
|
|
'label': '1'
|
|
}, {
|
|
'text': '内容较晦涩,小孩不感兴趣',
|
|
'label': '0'
|
|
}, {
|
|
'text': '贵且于我无用,买亏了',
|
|
'label': '0'
|
|
}, {
|
|
'text': '挺好,不错,喜欢,,',
|
|
'label': '1'
|
|
}]
|
|
}
|
|
model_id = 'damo/nlp_structbert_faq-question-answering_chinese-base'
|
|
mgimn_model_id = 'damo/nlp_mgimn_faq-question-answering_chinese-base'
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
def build_trainer(self, model_id, revision):
|
|
train_dataset = MsDataset.load('jd',
|
|
namespace='DAMO_NLP',
|
|
split='train').remap_columns(
|
|
{'sentence': 'text'})
|
|
eval_dataset = MsDataset.load('jd',
|
|
namespace='DAMO_NLP',
|
|
split='validation').remap_columns(
|
|
{'sentence': 'text'})
|
|
|
|
cfg: Config = read_config(model_id, revision)
|
|
cfg.train.train_iters_per_epoch = 50
|
|
cfg.evaluation.val_iters_per_epoch = 2
|
|
cfg.train.seed = 1234
|
|
cfg.train.hooks = [{
|
|
'type': 'CheckpointHook',
|
|
'by_epoch': False,
|
|
'interval': 50
|
|
}, {
|
|
'type': 'EvaluationHook',
|
|
'by_epoch': False,
|
|
'interval': 50
|
|
}, {
|
|
'type': 'TextLoggerHook',
|
|
'by_epoch': False,
|
|
'rounding_digits': 5,
|
|
'interval': 10
|
|
}]
|
|
cfg_file = os.path.join(self.tmp_dir, 'config.json')
|
|
cfg.dump(cfg_file)
|
|
|
|
trainer = build_trainer(Trainers.faq_question_answering_trainer,
|
|
default_args=dict(model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
cfg_file=cfg_file))
|
|
return trainer
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_faq_model_finetune(self):
|
|
trainer = self.build_trainer(self.model_id, 'v1.0.1')
|
|
trainer.train()
|
|
evaluate_result = trainer.evaluate()
|
|
self.assertAlmostEqual(evaluate_result['accuracy'], 0.95, delta=0.1)
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(ModelFile.TRAIN_OUTPUT_DIR, results_files)
|
|
|
|
output_dir = os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR)
|
|
pipeline_ins = pipeline(task=Tasks.faq_question_answering,
|
|
model=self.model_id)
|
|
result_before = pipeline_ins(self.param)
|
|
self.assertEqual(result_before['output'][0][0]['label'], '1')
|
|
self.assertAlmostEqual(result_before['output'][0][0]['score'],
|
|
0.2,
|
|
delta=0.2)
|
|
pipeline_ins = pipeline(task=Tasks.faq_question_answering,
|
|
model=output_dir)
|
|
result_after = pipeline_ins(self.param)
|
|
self.assertEqual(result_after['output'][0][0]['label'], '1')
|
|
self.assertAlmostEqual(result_after['output'][0][0]['score'],
|
|
0.8,
|
|
delta=0.2)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_faq_mgimn_model_finetune(self):
|
|
trainer = self.build_trainer(self.mgimn_model_id, 'v1.0.0')
|
|
trainer.train()
|
|
evaluate_result = trainer.evaluate()
|
|
self.assertAlmostEqual(evaluate_result['accuracy'], 0.75, delta=0.1)
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(ModelFile.TRAIN_OUTPUT_DIR, results_files)
|
|
|
|
output_dir = os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR)
|
|
pipeline_ins = pipeline(task=Tasks.faq_question_answering,
|
|
model=self.mgimn_model_id,
|
|
model_revision='v1.0.0')
|
|
result_before = pipeline_ins(self.param)
|
|
self.assertEqual(result_before['output'][0][0]['label'], '1')
|
|
self.assertAlmostEqual(result_before['output'][0][0]['score'],
|
|
0.9,
|
|
delta=0.2)
|
|
pipeline_ins = pipeline(task=Tasks.faq_question_answering,
|
|
model=output_dir)
|
|
result_after = pipeline_ins(self.param)
|
|
self.assertEqual(result_after['output'][0][0]['label'], '1')
|
|
self.assertAlmostEqual(result_after['output'][0][0]['score'],
|
|
0.9,
|
|
delta=0.2)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|