Files
EasyFace/tests/trainers/test_finetune_text_generation.py
2023-03-02 11:17:26 +08:00

170 lines
6.4 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.metainfo import Trainers
from modelscope.models.nlp import GPT3ForTextGeneration, PalmForTextGeneration
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.constant import ModelFile
from modelscope.utils.test_utils import test_level
class TestFinetuneTextGeneration(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
from datasets import Dataset
src_dataset_dict = {
'src_txt': [
'This is test sentence1-1', 'This is test sentence2-1',
'This is test sentence3-1'
]
}
src_tgt_dataset_dict = {
'src_txt':
src_dataset_dict['src_txt'],
'tgt_txt': [
'This is test sentence1-2', 'This is test sentence2-2',
'This is test sentence3-2'
]
}
self.src_dataset = MsDataset(Dataset.from_dict(src_dataset_dict))
self.src_tgt_dataset = MsDataset(
Dataset.from_dict(src_tgt_dataset_dict))
self.max_epochs = 3
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer_with_palm(self):
kwargs = dict(model='damo/nlp_palm2.0_text-generation_english-base',
train_dataset=self.src_tgt_dataset,
eval_dataset=self.src_tgt_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir)
trainer = build_trainer(name=Trainers.text_generation_trainer,
default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_with_palm_with_model_and_args(self):
cache_path = snapshot_download(
'damo/nlp_palm2.0_text-generation_english-base')
model = PalmForTextGeneration.from_pretrained(cache_path)
kwargs = dict(cfg_file=os.path.join(cache_path,
ModelFile.CONFIGURATION),
model=model,
train_dataset=self.src_tgt_dataset,
eval_dataset=self.src_tgt_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir)
trainer = build_trainer(name=Trainers.text_generation_trainer,
default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer_with_gpt3(self):
kwargs = dict(model='damo/nlp_gpt3_text-generation_chinese-base',
train_dataset=self.src_dataset,
eval_dataset=self.src_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir)
trainer = build_trainer(name=Trainers.text_generation_trainer,
default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_with_gpt3_with_model_and_args(self):
cache_path = snapshot_download(
'damo/nlp_gpt3_text-generation_chinese-base')
model = GPT3ForTextGeneration.from_pretrained(cache_path)
kwargs = dict(cfg_file=os.path.join(cache_path,
ModelFile.CONFIGURATION),
model=model,
train_dataset=self.src_dataset,
eval_dataset=self.src_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir)
trainer = build_trainer(default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skip
def test_finetune_cnndm(self):
from modelscope.msdatasets import MsDataset
dataset_dict = MsDataset.load('DuReader_robust-QG')
train_dataset = dataset_dict['train'].remap_columns({
'text1': 'src_txt',
'text2': 'tgt_txt'
})
eval_dataset = dataset_dict['validation'].remap_columns({
'text1':
'src_txt',
'text2':
'tgt_txt'
})
num_warmup_steps = 200
def noam_lambda(current_step: int):
current_step += 1
return min(current_step**(-0.5),
current_step * num_warmup_steps**(-1.5))
def cfg_modify_fn(cfg):
cfg.train.lr_scheduler = {
'type': 'LambdaLR',
'lr_lambda': noam_lambda,
'options': {
'by_epoch': False
}
}
return cfg
kwargs = dict(model='damo/nlp_palm2.0_text-generation_chinese-base',
train_dataset=train_dataset,
eval_dataset=eval_dataset,
work_dir=self.tmp_dir,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(name=Trainers.text_generation_trainer,
default_args=kwargs)
trainer.train()
if __name__ == '__main__':
unittest.main()