mirror of
https://gitcode.com/gh_mirrors/eas/EasyFace.git
synced 2025-12-30 04:52:28 +00:00
170 lines
6.4 KiB
Python
170 lines
6.4 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.models.nlp import GPT3ForTextGeneration, PalmForTextGeneration
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.constant import ModelFile
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestFinetuneTextGeneration(unittest.TestCase):
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
from datasets import Dataset
|
|
|
|
src_dataset_dict = {
|
|
'src_txt': [
|
|
'This is test sentence1-1', 'This is test sentence2-1',
|
|
'This is test sentence3-1'
|
|
]
|
|
}
|
|
src_tgt_dataset_dict = {
|
|
'src_txt':
|
|
src_dataset_dict['src_txt'],
|
|
'tgt_txt': [
|
|
'This is test sentence1-2', 'This is test sentence2-2',
|
|
'This is test sentence3-2'
|
|
]
|
|
}
|
|
|
|
self.src_dataset = MsDataset(Dataset.from_dict(src_dataset_dict))
|
|
self.src_tgt_dataset = MsDataset(
|
|
Dataset.from_dict(src_tgt_dataset_dict))
|
|
|
|
self.max_epochs = 3
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_trainer_with_palm(self):
|
|
|
|
kwargs = dict(model='damo/nlp_palm2.0_text-generation_english-base',
|
|
train_dataset=self.src_tgt_dataset,
|
|
eval_dataset=self.src_tgt_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer = build_trainer(name=Trainers.text_generation_trainer,
|
|
default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_trainer_with_palm_with_model_and_args(self):
|
|
|
|
cache_path = snapshot_download(
|
|
'damo/nlp_palm2.0_text-generation_english-base')
|
|
model = PalmForTextGeneration.from_pretrained(cache_path)
|
|
kwargs = dict(cfg_file=os.path.join(cache_path,
|
|
ModelFile.CONFIGURATION),
|
|
model=model,
|
|
train_dataset=self.src_tgt_dataset,
|
|
eval_dataset=self.src_tgt_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer = build_trainer(name=Trainers.text_generation_trainer,
|
|
default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_trainer_with_gpt3(self):
|
|
|
|
kwargs = dict(model='damo/nlp_gpt3_text-generation_chinese-base',
|
|
train_dataset=self.src_dataset,
|
|
eval_dataset=self.src_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer = build_trainer(name=Trainers.text_generation_trainer,
|
|
default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_trainer_with_gpt3_with_model_and_args(self):
|
|
|
|
cache_path = snapshot_download(
|
|
'damo/nlp_gpt3_text-generation_chinese-base')
|
|
model = GPT3ForTextGeneration.from_pretrained(cache_path)
|
|
kwargs = dict(cfg_file=os.path.join(cache_path,
|
|
ModelFile.CONFIGURATION),
|
|
model=model,
|
|
train_dataset=self.src_dataset,
|
|
eval_dataset=self.src_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer = build_trainer(default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skip
|
|
def test_finetune_cnndm(self):
|
|
from modelscope.msdatasets import MsDataset
|
|
dataset_dict = MsDataset.load('DuReader_robust-QG')
|
|
train_dataset = dataset_dict['train'].remap_columns({
|
|
'text1': 'src_txt',
|
|
'text2': 'tgt_txt'
|
|
})
|
|
eval_dataset = dataset_dict['validation'].remap_columns({
|
|
'text1':
|
|
'src_txt',
|
|
'text2':
|
|
'tgt_txt'
|
|
})
|
|
num_warmup_steps = 200
|
|
|
|
def noam_lambda(current_step: int):
|
|
current_step += 1
|
|
return min(current_step**(-0.5),
|
|
current_step * num_warmup_steps**(-1.5))
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.train.lr_scheduler = {
|
|
'type': 'LambdaLR',
|
|
'lr_lambda': noam_lambda,
|
|
'options': {
|
|
'by_epoch': False
|
|
}
|
|
}
|
|
return cfg
|
|
|
|
kwargs = dict(model='damo/nlp_palm2.0_text-generation_chinese-base',
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
work_dir=self.tmp_dir,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
trainer = build_trainer(name=Trainers.text_generation_trainer,
|
|
default_args=kwargs)
|
|
trainer.train()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|