mirror of
https://gitcode.com/gh_mirrors/eas/EasyFace.git
synced 2025-12-30 04:52:28 +00:00
196 lines
7.0 KiB
Python
196 lines
7.0 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
|
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.models import Model
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.constant import ModelFile, Tasks
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestFinetuneSequenceClassification(unittest.TestCase):
|
|
inputs = {
|
|
'source_sentence': ["how long it take to get a master's degree"],
|
|
'sentences_to_compare': [
|
|
"On average, students take about 18 to 24 months to complete a master's degree.",
|
|
'On the other hand, some students prefer to go at a slower pace and choose to take '
|
|
'several years to complete their studies.',
|
|
'It can take anywhere from two semesters'
|
|
]
|
|
}
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
def finetune(self,
|
|
model_id,
|
|
train_dataset,
|
|
eval_dataset,
|
|
name=Trainers.nlp_text_ranking_trainer,
|
|
cfg_modify_fn=None,
|
|
**kwargs):
|
|
kwargs = dict(model=model_id,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
work_dir=self.tmp_dir,
|
|
cfg_modify_fn=cfg_modify_fn,
|
|
**kwargs)
|
|
|
|
os.environ['LOCAL_RANK'] = '0'
|
|
trainer = build_trainer(name=name, default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_finetune_msmarco(self):
|
|
def cfg_modify_fn(cfg):
|
|
neg_sample = 4
|
|
cfg.task = 'text-ranking'
|
|
cfg['preprocessor'] = {'type': 'text-ranking'}
|
|
cfg.train.optimizer.lr = 2e-5
|
|
cfg['dataset'] = {
|
|
'train': {
|
|
'type': 'bert',
|
|
'query_sequence': 'query',
|
|
'pos_sequence': 'positive_passages',
|
|
'neg_sequence': 'negative_passages',
|
|
'text_fileds': ['title', 'text'],
|
|
'qid_field': 'query_id',
|
|
'neg_sample': neg_sample
|
|
},
|
|
'val': {
|
|
'type': 'bert',
|
|
'query_sequence': 'query',
|
|
'pos_sequence': 'positive_passages',
|
|
'neg_sequence': 'negative_passages',
|
|
'text_fileds': ['title', 'text'],
|
|
'qid_field': 'query_id'
|
|
},
|
|
}
|
|
cfg['evaluation']['dataloader']['batch_size_per_gpu'] = 30
|
|
cfg.train.max_epochs = 1
|
|
cfg.train.train_batch_size = 4
|
|
cfg.train.lr_scheduler = {
|
|
'type': 'LinearLR',
|
|
'start_factor': 1.0,
|
|
'end_factor': 0.0,
|
|
'options': {
|
|
'by_epoch': False
|
|
}
|
|
}
|
|
cfg.model['neg_sample'] = 4
|
|
cfg.train.hooks = [{
|
|
'type': 'CheckpointHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TextLoggerHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'IterTimerHook'
|
|
}, {
|
|
'type': 'EvaluationHook',
|
|
'by_epoch': False,
|
|
'interval': 15
|
|
}]
|
|
return cfg
|
|
|
|
# load dataset
|
|
ds = MsDataset.load('passage-ranking-demo', 'zyznull')
|
|
train_ds = ds['train'].to_hf_dataset()
|
|
dev_ds = ds['dev'].to_hf_dataset()
|
|
|
|
model_id = 'damo/nlp_corom_passage-ranking_english-base'
|
|
self.finetune(model_id=model_id,
|
|
train_dataset=train_ds,
|
|
eval_dataset=dev_ds,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
output_dir = os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR)
|
|
self.pipeline_text_ranking(output_dir)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_finetune_dureader(self):
|
|
def cfg_modify_fn(cfg):
|
|
cfg.task = 'text-ranking'
|
|
cfg['preprocessor'] = {'type': 'text-ranking'}
|
|
cfg.train.optimizer.lr = 2e-5
|
|
cfg['dataset'] = {
|
|
'train': {
|
|
'type': 'bert',
|
|
'query_sequence': 'query',
|
|
'pos_sequence': 'positive_passages',
|
|
'neg_sequence': 'negative_passages',
|
|
'text_fileds': ['text'],
|
|
'qid_field': 'query_id'
|
|
},
|
|
'val': {
|
|
'type': 'bert',
|
|
'query_sequence': 'query',
|
|
'pos_sequence': 'positive_passages',
|
|
'neg_sequence': 'negative_passages',
|
|
'text_fileds': ['text'],
|
|
'qid_field': 'query_id'
|
|
},
|
|
}
|
|
cfg['evaluation']['dataloader']['batch_size_per_gpu'] = 30
|
|
cfg.train.max_epochs = 1
|
|
cfg.train.train_batch_size = 4
|
|
cfg.train.lr_scheduler = {
|
|
'type': 'LinearLR',
|
|
'start_factor': 1.0,
|
|
'end_factor': 0.0,
|
|
'options': {
|
|
'by_epoch': False
|
|
}
|
|
}
|
|
cfg.train.hooks = [{
|
|
'type': 'CheckpointHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TextLoggerHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'IterTimerHook'
|
|
}, {
|
|
'type': 'EvaluationHook',
|
|
'by_epoch': False,
|
|
'interval': 5000
|
|
}]
|
|
return cfg
|
|
|
|
# load dataset
|
|
ds = MsDataset.load('dureader-retrieval-ranking', 'zyznull')
|
|
train_ds = ds['train'].to_hf_dataset().shard(1000, index=0)
|
|
dev_ds = ds['dev'].to_hf_dataset()
|
|
model_id = 'damo/nlp_rom_passage-ranking_chinese-base'
|
|
self.finetune(model_id=model_id,
|
|
train_dataset=train_ds,
|
|
eval_dataset=dev_ds,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
def pipeline_text_ranking(self, model_dir):
|
|
model = Model.from_pretrained(model_dir)
|
|
pipeline_ins = pipeline(task=Tasks.text_ranking, model=model)
|
|
print(pipeline_ins(input=self.inputs))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|