Files
EasyFace/tests/trainers/test_finetune_text_ranking.py
2023-03-02 11:17:26 +08:00

196 lines
7.0 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
import torch
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from modelscope.metainfo import Trainers
from modelscope.models import Model
from modelscope.msdatasets import MsDataset
from modelscope.pipelines import pipeline
from modelscope.trainers import build_trainer
from modelscope.utils.constant import ModelFile, Tasks
from modelscope.utils.test_utils import test_level
class TestFinetuneSequenceClassification(unittest.TestCase):
inputs = {
'source_sentence': ["how long it take to get a master's degree"],
'sentences_to_compare': [
"On average, students take about 18 to 24 months to complete a master's degree.",
'On the other hand, some students prefer to go at a slower pace and choose to take '
'several years to complete their studies.',
'It can take anywhere from two semesters'
]
}
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
def finetune(self,
model_id,
train_dataset,
eval_dataset,
name=Trainers.nlp_text_ranking_trainer,
cfg_modify_fn=None,
**kwargs):
kwargs = dict(model=model_id,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
work_dir=self.tmp_dir,
cfg_modify_fn=cfg_modify_fn,
**kwargs)
os.environ['LOCAL_RANK'] = '0'
trainer = build_trainer(name=name, default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_finetune_msmarco(self):
def cfg_modify_fn(cfg):
neg_sample = 4
cfg.task = 'text-ranking'
cfg['preprocessor'] = {'type': 'text-ranking'}
cfg.train.optimizer.lr = 2e-5
cfg['dataset'] = {
'train': {
'type': 'bert',
'query_sequence': 'query',
'pos_sequence': 'positive_passages',
'neg_sequence': 'negative_passages',
'text_fileds': ['title', 'text'],
'qid_field': 'query_id',
'neg_sample': neg_sample
},
'val': {
'type': 'bert',
'query_sequence': 'query',
'pos_sequence': 'positive_passages',
'neg_sequence': 'negative_passages',
'text_fileds': ['title', 'text'],
'qid_field': 'query_id'
},
}
cfg['evaluation']['dataloader']['batch_size_per_gpu'] = 30
cfg.train.max_epochs = 1
cfg.train.train_batch_size = 4
cfg.train.lr_scheduler = {
'type': 'LinearLR',
'start_factor': 1.0,
'end_factor': 0.0,
'options': {
'by_epoch': False
}
}
cfg.model['neg_sample'] = 4
cfg.train.hooks = [{
'type': 'CheckpointHook',
'interval': 1
}, {
'type': 'TextLoggerHook',
'interval': 1
}, {
'type': 'IterTimerHook'
}, {
'type': 'EvaluationHook',
'by_epoch': False,
'interval': 15
}]
return cfg
# load dataset
ds = MsDataset.load('passage-ranking-demo', 'zyznull')
train_ds = ds['train'].to_hf_dataset()
dev_ds = ds['dev'].to_hf_dataset()
model_id = 'damo/nlp_corom_passage-ranking_english-base'
self.finetune(model_id=model_id,
train_dataset=train_ds,
eval_dataset=dev_ds,
cfg_modify_fn=cfg_modify_fn)
output_dir = os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR)
self.pipeline_text_ranking(output_dir)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_finetune_dureader(self):
def cfg_modify_fn(cfg):
cfg.task = 'text-ranking'
cfg['preprocessor'] = {'type': 'text-ranking'}
cfg.train.optimizer.lr = 2e-5
cfg['dataset'] = {
'train': {
'type': 'bert',
'query_sequence': 'query',
'pos_sequence': 'positive_passages',
'neg_sequence': 'negative_passages',
'text_fileds': ['text'],
'qid_field': 'query_id'
},
'val': {
'type': 'bert',
'query_sequence': 'query',
'pos_sequence': 'positive_passages',
'neg_sequence': 'negative_passages',
'text_fileds': ['text'],
'qid_field': 'query_id'
},
}
cfg['evaluation']['dataloader']['batch_size_per_gpu'] = 30
cfg.train.max_epochs = 1
cfg.train.train_batch_size = 4
cfg.train.lr_scheduler = {
'type': 'LinearLR',
'start_factor': 1.0,
'end_factor': 0.0,
'options': {
'by_epoch': False
}
}
cfg.train.hooks = [{
'type': 'CheckpointHook',
'interval': 1
}, {
'type': 'TextLoggerHook',
'interval': 1
}, {
'type': 'IterTimerHook'
}, {
'type': 'EvaluationHook',
'by_epoch': False,
'interval': 5000
}]
return cfg
# load dataset
ds = MsDataset.load('dureader-retrieval-ranking', 'zyznull')
train_ds = ds['train'].to_hf_dataset().shard(1000, index=0)
dev_ds = ds['dev'].to_hf_dataset()
model_id = 'damo/nlp_rom_passage-ranking_chinese-base'
self.finetune(model_id=model_id,
train_dataset=train_ds,
eval_dataset=dev_ds,
cfg_modify_fn=cfg_modify_fn)
def pipeline_text_ranking(self, model_dir):
model = Model.from_pretrained(model_dir)
pipeline_ins = pipeline(task=Tasks.text_ranking, model=model)
print(pipeline_ins(input=self.inputs))
if __name__ == '__main__':
unittest.main()