Files
EasyFace/tests/trainers/test_general_image_classification_trainer.py
2023-03-02 11:17:26 +08:00

170 lines
6.6 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import zipfile
from functools import partial
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.metainfo import Trainers
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.config import Config, ConfigDict
from modelscope.utils.constant import DownloadMode, ModelFile
from modelscope.utils.test_utils import test_level
class TestGeneralImageClassificationTestTrainer(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
try:
self.train_dataset = MsDataset.load('cats_and_dogs',
namespace='tany0699',
subset_name='default',
split='train')
self.eval_dataset = MsDataset.load('cats_and_dogs',
namespace='tany0699',
subset_name='default',
split='validation')
except Exception as e:
print(f'Download dataset error: {e}')
self.max_epochs = 1
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_nextvit_dailylife_train(self):
model_id = 'damo/cv_nextvit-small_image-classification_Dailylife-labels'
def cfg_modify_fn(cfg):
cfg.train.dataloader.batch_size_per_gpu = 32
cfg.train.dataloader.workers_per_gpu = 1
cfg.train.max_epochs = self.max_epochs
cfg.model.mm_model.head.num_classes = 2
cfg.train.optimizer.lr = 1e-4
cfg.train.lr_config.warmup_iters = 1
cfg.train.evaluation.metric_options = {'topk': (1, )}
cfg.evaluation.metric_options = {'topk': (1, )}
return cfg
kwargs = dict(model=model_id,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(name=Trainers.image_classification,
default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_nextvit_dailylife_eval(self):
model_id = 'damo/cv_nextvit-small_image-classification_Dailylife-labels'
kwargs = dict(model=model_id,
work_dir=self.tmp_dir,
train_dataset=None,
eval_dataset=self.eval_dataset)
trainer = build_trainer(name=Trainers.image_classification,
default_args=kwargs)
result = trainer.evaluate()
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_convnext_garbage_train(self):
model_id = 'damo/cv_convnext-base_image-classification_garbage'
def cfg_modify_fn(cfg):
cfg.train.dataloader.batch_size_per_gpu = 16
cfg.train.dataloader.workers_per_gpu = 1
cfg.train.max_epochs = self.max_epochs
cfg.model.mm_model.head.num_classes = 2
cfg.train.optimizer.lr = 1e-4
cfg.train.lr_config.warmup_iters = 1
cfg.train.evaluation.metric_options = {'topk': (1, )}
cfg.evaluation.metric_options = {'topk': (1, )}
return cfg
kwargs = dict(model=model_id,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(name=Trainers.image_classification,
default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_convnext_garbage_eval(self):
model_id = 'damo/cv_convnext-base_image-classification_garbage'
kwargs = dict(model=model_id,
work_dir=self.tmp_dir,
train_dataset=None,
eval_dataset=self.eval_dataset)
trainer = build_trainer(name=Trainers.image_classification,
default_args=kwargs)
result = trainer.evaluate()
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_beitv2_train_eval(self):
model_id = 'damo/cv_beitv2-base_image-classification_patch16_224_pt1k_ft22k_in1k'
def cfg_modify_fn(cfg):
cfg.train.dataloader.batch_size_per_gpu = 16
cfg.train.dataloader.workers_per_gpu = 1
cfg.train.max_epochs = self.max_epochs
cfg.model.mm_model.head.num_classes = 2
cfg.model.mm_model.head.loss.num_classes = 2
cfg.train.optimizer.lr = 1e-4
cfg.train.lr_config.warmup_iters = 1
cfg.train.evaluation.metric_options = {'topk': (1, )}
cfg.evaluation.metric_options = {'topk': (1, )}
return cfg
kwargs = dict(model=model_id,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(name=Trainers.image_classification,
default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
result = trainer.evaluate()
print(result)
if __name__ == '__main__':
unittest.main()