mirror of
https://gitcode.com/gh_mirrors/eas/EasyFace.git
synced 2025-12-30 13:02:29 +00:00
170 lines
6.6 KiB
Python
170 lines
6.6 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
import zipfile
|
|
from functools import partial
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.config import Config, ConfigDict
|
|
from modelscope.utils.constant import DownloadMode, ModelFile
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestGeneralImageClassificationTestTrainer(unittest.TestCase):
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
|
|
try:
|
|
self.train_dataset = MsDataset.load('cats_and_dogs',
|
|
namespace='tany0699',
|
|
subset_name='default',
|
|
split='train')
|
|
|
|
self.eval_dataset = MsDataset.load('cats_and_dogs',
|
|
namespace='tany0699',
|
|
subset_name='default',
|
|
split='validation')
|
|
except Exception as e:
|
|
print(f'Download dataset error: {e}')
|
|
|
|
self.max_epochs = 1
|
|
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_nextvit_dailylife_train(self):
|
|
model_id = 'damo/cv_nextvit-small_image-classification_Dailylife-labels'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.train.dataloader.batch_size_per_gpu = 32
|
|
cfg.train.dataloader.workers_per_gpu = 1
|
|
cfg.train.max_epochs = self.max_epochs
|
|
cfg.model.mm_model.head.num_classes = 2
|
|
cfg.train.optimizer.lr = 1e-4
|
|
cfg.train.lr_config.warmup_iters = 1
|
|
cfg.train.evaluation.metric_options = {'topk': (1, )}
|
|
cfg.evaluation.metric_options = {'topk': (1, )}
|
|
return cfg
|
|
|
|
kwargs = dict(model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
trainer = build_trainer(name=Trainers.image_classification,
|
|
default_args=kwargs)
|
|
trainer.train()
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_nextvit_dailylife_eval(self):
|
|
model_id = 'damo/cv_nextvit-small_image-classification_Dailylife-labels'
|
|
|
|
kwargs = dict(model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=None,
|
|
eval_dataset=self.eval_dataset)
|
|
|
|
trainer = build_trainer(name=Trainers.image_classification,
|
|
default_args=kwargs)
|
|
result = trainer.evaluate()
|
|
print(result)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_convnext_garbage_train(self):
|
|
model_id = 'damo/cv_convnext-base_image-classification_garbage'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.train.dataloader.batch_size_per_gpu = 16
|
|
cfg.train.dataloader.workers_per_gpu = 1
|
|
cfg.train.max_epochs = self.max_epochs
|
|
cfg.model.mm_model.head.num_classes = 2
|
|
cfg.train.optimizer.lr = 1e-4
|
|
cfg.train.lr_config.warmup_iters = 1
|
|
cfg.train.evaluation.metric_options = {'topk': (1, )}
|
|
cfg.evaluation.metric_options = {'topk': (1, )}
|
|
return cfg
|
|
|
|
kwargs = dict(model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
trainer = build_trainer(name=Trainers.image_classification,
|
|
default_args=kwargs)
|
|
trainer.train()
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_convnext_garbage_eval(self):
|
|
model_id = 'damo/cv_convnext-base_image-classification_garbage'
|
|
|
|
kwargs = dict(model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=None,
|
|
eval_dataset=self.eval_dataset)
|
|
|
|
trainer = build_trainer(name=Trainers.image_classification,
|
|
default_args=kwargs)
|
|
result = trainer.evaluate()
|
|
print(result)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_beitv2_train_eval(self):
|
|
model_id = 'damo/cv_beitv2-base_image-classification_patch16_224_pt1k_ft22k_in1k'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.train.dataloader.batch_size_per_gpu = 16
|
|
cfg.train.dataloader.workers_per_gpu = 1
|
|
cfg.train.max_epochs = self.max_epochs
|
|
cfg.model.mm_model.head.num_classes = 2
|
|
cfg.model.mm_model.head.loss.num_classes = 2
|
|
cfg.train.optimizer.lr = 1e-4
|
|
cfg.train.lr_config.warmup_iters = 1
|
|
cfg.train.evaluation.metric_options = {'topk': (1, )}
|
|
cfg.evaluation.metric_options = {'topk': (1, )}
|
|
return cfg
|
|
|
|
kwargs = dict(model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
trainer = build_trainer(name=Trainers.image_classification,
|
|
default_args=kwargs)
|
|
trainer.train()
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
result = trainer.evaluate()
|
|
print(result)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|