Files
EasyFace/tests/trainers/test_finetune_token_classification.py
2023-03-02 11:17:26 +08:00

132 lines
4.5 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
from functools import reduce
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from modelscope.utils.test_utils import test_level
class TestFinetuneTokenClassification(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
def finetune(self,
model_id,
train_dataset,
eval_dataset,
name=Trainers.nlp_base_trainer,
cfg_modify_fn=None,
**kwargs):
kwargs = dict(model=model_id,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
work_dir=self.tmp_dir,
cfg_modify_fn=cfg_modify_fn,
**kwargs)
os.environ['LOCAL_RANK'] = '0'
trainer = build_trainer(name=name, default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(10):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skip
def test_word_segmentation(self):
"""This unittest is used to reproduce the icwb2:pku dataset + structbert model training results.
User can train a custom dataset by modifying this piece of code and comment the @unittest.skip.
"""
os.system(
f'curl http://sighan.cs.uchicago.edu/bakeoff2005/data/icwb2-data.zip > {self.tmp_dir}/icwb2-data.zip'
)
shutil.unpack_archive(f'{self.tmp_dir}/icwb2-data.zip', self.tmp_dir)
from datasets import load_dataset
from modelscope.preprocessors.nlp import WordSegmentationBlankSetToLabelPreprocessor
preprocessor = WordSegmentationBlankSetToLabelPreprocessor()
dataset = load_dataset(
'text',
data_files=f'{self.tmp_dir}/icwb2-data/training/pku_training.utf8')
def split_to_dict(examples):
return preprocessor(examples['text'])
dataset = dataset.map(split_to_dict, batched=False)
def reducer(x, y):
x = x.split(' ') if isinstance(x, str) else x
y = y.split(' ') if isinstance(y, str) else y
return x + y
label_enumerate_values = list(
set(reduce(reducer, dataset['train'][:1000]['labels'])))
label_enumerate_values.sort()
train_len = int(len(dataset['train']) * 0.7)
train_dataset = dataset['train'].select(range(train_len))
dev_dataset = dataset['train'].select(
range(train_len, len(dataset['train'])))
def cfg_modify_fn(cfg):
cfg.task = 'token-classification'
cfg['dataset'] = {
'train': {
'labels': label_enumerate_values,
'first_sequence': 'tokens',
'label': 'labels',
}
}
cfg['preprocessor'] = {
'type': 'token-cls-tokenizer',
'padding': 'max_length'
}
cfg.train.max_epochs = 2
cfg.train.dataloader.workers_per_gpu = 0
cfg.evaluation.dataloader.workers_per_gpu = 0
cfg.train.lr_scheduler = {
'type': 'LinearLR',
'start_factor': 1.0,
'end_factor': 0.0,
'total_iters':
int(len(train_dataset) / 32) * cfg.train.max_epochs,
'options': {
'by_epoch': False
}
}
cfg.train.hooks = [{
'type': 'CheckpointHook',
'interval': 1
}, {
'type': 'TextLoggerHook',
'interval': 1
}, {
'type': 'IterTimerHook'
}, {
'type': 'EvaluationHook',
'by_epoch': False,
'interval': 50
}]
return cfg
self.finetune('damo/nlp_structbert_backbone_base_std',
train_dataset,
dev_dataset,
cfg_modify_fn=cfg_modify_fn)
if __name__ == '__main__':
unittest.main()