Files
EasyFace/tests/trainers/test_referring_video_object_segmentation_trainer.py
2023-03-02 11:17:26 +08:00

95 lines
3.7 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import zipfile
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.metainfo import Trainers
from modelscope.models.cv.referring_video_object_segmentation import \
ReferringVideoObjectSegmentation
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.config import Config, ConfigDict
from modelscope.utils.constant import ModelFile
from modelscope.utils.test_utils import test_level
class TestImageInstanceSegmentationTrainer(unittest.TestCase):
model_id = 'damo/cv_swin-t_referring_video-object-segmentation'
dataset_name = 'referring_vos_toydata'
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
cache_path = snapshot_download(self.model_id)
config_path = os.path.join(cache_path, ModelFile.CONFIGURATION)
cfg = Config.from_file(config_path)
max_epochs = cfg.train.max_epochs
train_data_cfg = ConfigDict(name=self.dataset_name,
split='train',
test_mode=False,
cfg=cfg.dataset)
test_data_cfg = ConfigDict(name=self.dataset_name,
split='test',
test_mode=True,
cfg=cfg.dataset)
self.train_dataset = MsDataset.load(dataset_name=train_data_cfg.name,
split=train_data_cfg.split,
cfg=train_data_cfg.cfg,
test_mode=train_data_cfg.test_mode)
assert next(
iter(self.train_dataset.config_kwargs['split_config'].values()))
self.test_dataset = MsDataset.load(dataset_name=test_data_cfg.name,
split=test_data_cfg.split,
cfg=test_data_cfg.cfg,
test_mode=test_data_cfg.test_mode)
assert next(
iter(self.test_dataset.config_kwargs['split_config'].values()))
self.max_epochs = max_epochs
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer(self):
kwargs = dict(model=self.model_id,
train_dataset=self.train_dataset,
eval_dataset=self.test_dataset,
work_dir='./work_dir')
trainer = build_trainer(
name=Trainers.referring_video_object_segmentation,
default_args=kwargs)
trainer.train()
results_files = os.listdir(trainer.work_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_with_model_and_args(self):
cache_path = snapshot_download(self.model_id)
model = ReferringVideoObjectSegmentation.from_pretrained(cache_path)
kwargs = dict(cfg_file=os.path.join(cache_path,
ModelFile.CONFIGURATION),
model=model,
train_dataset=self.train_dataset,
eval_dataset=self.test_dataset,
work_dir='./work_dir')
trainer = build_trainer(
name=Trainers.referring_video_object_segmentation,
default_args=kwargs)
trainer.train()
results_files = os.listdir(trainer.work_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
if __name__ == '__main__':
unittest.main()