/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, Tadas Baltrusaitis, all rights reserved. // // ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY // // BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. // IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. // // License can be found in OpenFace-license.txt // // * Any publications arising from the use of this software, including but // not limited to academic journal and conference publications, technical // reports and manuals, must cite at least one of the following works: // // OpenFace 2.0: Facial Behavior Analysis Toolkit // Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency // in IEEE International Conference on Automatic Face and Gesture Recognition, 2018 // // Convolutional experts constrained local model for facial landmark detection. // A. Zadeh, T. Baltrušaitis, and Louis-Philippe Morency, // in Computer Vision and Pattern Recognition Workshops, 2017. // // Rendering of Eyes for Eye-Shape Registration and Gaze Estimation // Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling // in IEEE International. Conference on Computer Vision (ICCV), 2015 // // Cross-dataset learning and person-specific normalisation for automatic Action Unit detection // Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson // in Facial Expression Recognition and Analysis Challenge, // IEEE International Conference on Automatic Face and Gesture Recognition, 2015 // /////////////////////////////////////////////////////////////////////////////// #ifndef __FACE_DETECTOR_MTCNN_h_ #define __FACE_DETECTOR_MTCNN_h_ // OpenCV includes #include // System includes #include using namespace std; namespace LandmarkDetector { class CNN { public: //========================================== // Default constructor CNN() { ; } // Copy constructor CNN(const CNN& other); // Given an image apply a CNN on it, the boolean direct controls if direct convolution is used (through matrix multiplication) or an FFT optimization std::vector > Inference(const cv::Mat& input_img, bool direct = true, bool thread_safe = false); // Reading in the model void Read(const string& location); // Clearing precomputed DFTs void ClearPrecomp(); size_t NumberOfLayers() { return cnn_layer_types.size(); } private: //========================================== // Convolutional Neural Network // CNN layers // Layer -> Weight matrix vector > cnn_convolutional_layers_weights; // Keeping some pre-allocated im2col data as malloc is a significant time cost (not thread safe though) vector > conv_layer_pre_alloc_im2col; // Layer -> kernel -> input maps vector > > > cnn_convolutional_layers; vector > cnn_convolutional_layers_bias; // Layer matrix + bas vector > cnn_fully_connected_layers_weights; vector > cnn_fully_connected_layers_biases; vector > cnn_prelu_layer_weights; vector > cnn_max_pooling_layers; // Precomputations for faster convolution vector > > > > cnn_convolutional_layers_dft; // CNN: 0 - convolutional, 1 - max pooling, 2 - fully connected, 3 - prelu, 4 - sigmoid vector cnn_layer_types; }; //=========================================================================== // // Checking if landmark detection was successful using an SVR regressor // Using multiple validators trained add different views // The regressor outputs -1 for ideal alignment and 1 for worst alignment //=========================================================================== class FaceDetectorMTCNN { public: // Default constructor FaceDetectorMTCNN() { ; } FaceDetectorMTCNN(const string& location); // Copy constructor FaceDetectorMTCNN(const FaceDetectorMTCNN& other); // Given an image, orientation and detected landmarks output the result of the appropriate regressor bool DetectFaces(vector >& o_regions, const cv::Mat& input_img, std::vector& o_confidences, int min_face = 60, float t1 = 0.6, float t2 = 0.7, float t3 = 0.7); // Reading in the model void Read(const string& location); // Indicate if the model has been read in bool empty() { return PNet.NumberOfLayers() == 0 || RNet.NumberOfLayers() == 0 || ONet.NumberOfLayers() == 0; }; private: //========================================== // Components of the model CNN PNet; CNN RNet; CNN ONet; }; } #endif