function [ logGradientAlphas, logGradientBetas, SigmaInv, CholDecomp, Sigma ] = gradientCCRF_withoutReg( alphas, betas, precalcQ2withoutBeta, xq, yq, Precalc_yBy, PrecalcB_flat) %GRADIENTPRF Summary of this function goes here % Detailed explanation goes here % Calculate the Sigma inverse now % This is an optimised version as it does not use the whole matrix but % a lower diagonal part due to symmetry n = size(xq, 1); [SigmaInv] = CalcSigmaCCRFflat(alphas, betas, n, PrecalcB_flat); % Get the actual sigma from out SigmaInv % Sigma = inv(SigmaInv); % Below is an optimised version of the above using Cholesky decomposition % which decomposes a matrix into a upper triangular (R) and its % conjugate transpose R'; A = R'*R for real numbers, thus % inv(A) = inv(R)inv(R') CholDecomp=chol(SigmaInv); I=eye(size(SigmaInv)); % This is a way of calculating it faster than just inv(SigmaInv) Sigma=CholDecomp\(CholDecomp'\I); b = CalcbCCRF(alphas, xq); % mu = SigmaInv \ b = Sigma * b; % as we've calculate Sigma already, this is equivalent of the above mu = Sigma * b; logGradientAlphas = zeros(size(alphas)); logGradientBetas = zeros(size(betas)); K1 = numel(alphas); K2 = numel(betas); % calculating the derivative of L with respect to alpha_k for k = 1:K1 gaussGradient = -yq'*yq +2*yq'*xq(:,k) -2 * xq(:,k)' * mu + sum(mu.^2); % simplification as trace(Sigma * I) = trace(Sigma) zGradient = trace(Sigma); % add the Z (partition function) derivative now dLda = zGradient + gaussGradient; logGradientAlphas(k) = dLda; end % This was done for gradient checking % [alphasG, betaG] = gradientAnalytical(nFrames, S, alphas, beta, xq, yq, mask); % calculating the derivative of log(L) with respect to the betas for k=1:K2 % Bs = Bs(:,:,k); % dSdb = q2./betas(k); we precalculate this, as it does not change % over the course of optimisation (dSdb - dSigma/dbeta) dSdb = precalcQ2withoutBeta{k}; % -yq'*dSdb*yq can be precalculated as they don't change through % iterations (precalcQ2withoutBeta is dSdb % gaussGradient = -yq'*dSdb*yq + mu'*dSdb*mu; % this does the above line gaussGradient = Precalc_yBy(k) + mu'*dSdb*mu; % zGradient = trace(Sigma*dSdb); zGradient = Sigma(:)'*dSdb(:); % equivalent but faster to the above line dLdb = gaussGradient + zGradient; logGradientBetas(k) = dLdb; end end