mirror of
https://gitcode.com/gh_mirrors/ope/OpenFace.git
synced 2025-12-30 13:02:30 +00:00
121 lines
4.3 KiB
C++
121 lines
4.3 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
//
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace 2.0: Facial Behavior Analysis Toolkit
|
|
// Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency
|
|
// in IEEE International Conference on Automatic Face and Gesture Recognition, 2018
|
|
//
|
|
// Convolutional experts constrained local model for facial landmark detection.
|
|
// A. Zadeh, T. Baltrušaitis, and Louis-Philippe Morency,
|
|
// in Computer Vision and Pattern Recognition Workshops, 2017.
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-specific normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Parameters of the CE-CLM, CLNF, and CLM trackers
|
|
#ifndef LANDMARK_DETECTOR_PARAM_H
|
|
#define LANDMARK_DETECTOR_PARAM_H
|
|
|
|
#include <vector>
|
|
|
|
using namespace std;
|
|
|
|
namespace LandmarkDetector
|
|
{
|
|
|
|
struct FaceModelParameters
|
|
{
|
|
|
|
// A number of RLMS or NU-RLMS iterations
|
|
int num_optimisation_iteration;
|
|
|
|
// Should pose be limited to 180 degrees frontal
|
|
bool limit_pose;
|
|
|
|
// Should face validation be done
|
|
bool validate_detections;
|
|
|
|
// Landmark detection validator boundary for correct detection, the regressor output 1 (perfect alignment) 0 (bad alignment),
|
|
float validation_boundary;
|
|
|
|
// Used when tracking is going well
|
|
vector<int> window_sizes_small;
|
|
|
|
// Used when initialising or tracking fails
|
|
vector<int> window_sizes_init;
|
|
|
|
// Used for the current frame
|
|
vector<int> window_sizes_current;
|
|
|
|
// How big is the tracking template that helps with large motions
|
|
float face_template_scale;
|
|
bool use_face_template;
|
|
|
|
// Where to load the model from
|
|
string model_location;
|
|
|
|
// this is used for the smooting of response maps (KDE sigma)
|
|
float sigma;
|
|
|
|
float reg_factor; // weight put to regularisation
|
|
float weight_factor; // factor for weighted least squares
|
|
|
|
// should multiple views be considered during reinit
|
|
bool multi_view;
|
|
|
|
// Based on model location, this affects the parameter settings
|
|
enum LandmarkDetector { CLM_DETECTOR, CLNF_DETECTOR, CECLM_DETECTOR };
|
|
LandmarkDetector curr_landmark_detector;
|
|
|
|
// How often should face detection be used to attempt reinitialisation, every n frames (set to negative not to reinit)
|
|
int reinit_video_every;
|
|
|
|
// Determining which face detector to use for (re)initialisation, HAAR is quicker but provides more false positives and is not goot for in-the-wild conditions
|
|
// Also HAAR detector can detect smaller faces while HOG SVM is only capable of detecting faces at least 70px across
|
|
// MTCNN detector is much more accurate that the other two, and is even suitable for profile faces, but it is somewhat slower
|
|
enum FaceDetector{HAAR_DETECTOR, HOG_SVM_DETECTOR, MTCNN_DETECTOR};
|
|
|
|
string haar_face_detector_location;
|
|
string mtcnn_face_detector_location;
|
|
FaceDetector curr_face_detector;
|
|
|
|
// Should the model be refined hierarchically (if available)
|
|
bool refine_hierarchical;
|
|
|
|
// Should the parameters be refined for different scales
|
|
bool refine_parameters;
|
|
|
|
FaceModelParameters();
|
|
|
|
FaceModelParameters(vector<string> &arguments);
|
|
|
|
private:
|
|
void init();
|
|
void check_model_path(const std::string& root = "/");
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#endif // LANDMARK_DETECTOR_PARAM_H
|