mirror of
https://gitcode.com/gh_mirrors/ope/OpenFace.git
synced 2025-12-30 04:52:29 +00:00
189 lines
6.5 KiB
C++
189 lines
6.5 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace 2.0: Facial Behavior Analysis Toolkit
|
|
// Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency
|
|
// in IEEE International Conference on Automatic Face and Gesture Recognition, 2018
|
|
//
|
|
// Convolutional experts constrained local model for facial landmark detection.
|
|
// A. Zadeh, T. Baltrušaitis, and Louis-Philippe Morency,
|
|
// in Computer Vision and Pattern Recognition Workshops, 2017.
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-specific normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// FaceTrackingVid.cpp : Defines the entry point for the console application for tracking faces in videos.
|
|
|
|
// Libraries for landmark detection (includes CLNF and CLM modules)
|
|
#include "LandmarkCoreIncludes.h"
|
|
#include "GazeEstimation.h"
|
|
|
|
#include <SequenceCapture.h>
|
|
#include <Visualizer.h>
|
|
#include <VisualizationUtils.h>
|
|
|
|
#define INFO_STREAM( stream ) \
|
|
std::cout << stream << std::endl
|
|
|
|
#define WARN_STREAM( stream ) \
|
|
std::cout << "Warning: " << stream << std::endl
|
|
|
|
#define ERROR_STREAM( stream ) \
|
|
std::cout << "Error: " << stream << std::endl
|
|
|
|
static void printErrorAndAbort(const std::string & error)
|
|
{
|
|
std::cout << error << std::endl;
|
|
abort();
|
|
}
|
|
|
|
#define FATAL_STREAM( stream ) \
|
|
printErrorAndAbort( std::string( "Fatal error: " ) + stream )
|
|
|
|
using namespace std;
|
|
|
|
vector<string> get_arguments(int argc, char **argv)
|
|
{
|
|
|
|
vector<string> arguments;
|
|
|
|
for (int i = 0; i < argc; ++i)
|
|
{
|
|
arguments.push_back(string(argv[i]));
|
|
}
|
|
return arguments;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
|
|
vector<string> arguments = get_arguments(argc, argv);
|
|
|
|
// no arguments: output usage
|
|
if (arguments.size() == 1)
|
|
{
|
|
cout << "For command line arguments see:" << endl;
|
|
cout << " https://github.com/TadasBaltrusaitis/OpenFace/wiki/Command-line-arguments";
|
|
return 0;
|
|
}
|
|
|
|
LandmarkDetector::FaceModelParameters det_parameters(arguments);
|
|
|
|
// The modules that are being used for tracking
|
|
LandmarkDetector::CLNF face_model(det_parameters.model_location);
|
|
if (!face_model.loaded_successfully)
|
|
{
|
|
cout << "ERROR: Could not load the landmark detector" << endl;
|
|
return 1;
|
|
}
|
|
|
|
if (!face_model.eye_model)
|
|
{
|
|
cout << "WARNING: no eye model found" << endl;
|
|
}
|
|
|
|
// Open a sequence
|
|
Utilities::SequenceCapture sequence_reader;
|
|
|
|
// A utility for visualizing the results (show just the tracks)
|
|
Utilities::Visualizer visualizer(true, false, false, false);
|
|
|
|
// Tracking FPS for visualization
|
|
Utilities::FpsTracker fps_tracker;
|
|
fps_tracker.AddFrame();
|
|
|
|
int sequence_number = 0;
|
|
|
|
while (true) // this is not a for loop as we might also be reading from a webcam
|
|
{
|
|
|
|
// The sequence reader chooses what to open based on command line arguments provided
|
|
if (!sequence_reader.Open(arguments))
|
|
break;
|
|
|
|
INFO_STREAM("Device or file opened");
|
|
|
|
cv::Mat rgb_image = sequence_reader.GetNextFrame();
|
|
|
|
INFO_STREAM("Starting tracking");
|
|
while (!rgb_image.empty()) // this is not a for loop as we might also be reading from a webcam
|
|
{
|
|
|
|
// Reading the images
|
|
cv::Mat_<uchar> grayscale_image = sequence_reader.GetGrayFrame();
|
|
|
|
// The actual facial landmark detection / tracking
|
|
bool detection_success = LandmarkDetector::DetectLandmarksInVideo(rgb_image, face_model, det_parameters, grayscale_image);
|
|
|
|
// Gaze tracking, absolute gaze direction
|
|
cv::Point3f gazeDirection0(0, 0, -1);
|
|
cv::Point3f gazeDirection1(0, 0, -1);
|
|
|
|
// If tracking succeeded and we have an eye model, estimate gaze
|
|
if (detection_success && face_model.eye_model)
|
|
{
|
|
GazeAnalysis::EstimateGaze(face_model, gazeDirection0, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, true);
|
|
GazeAnalysis::EstimateGaze(face_model, gazeDirection1, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, false);
|
|
}
|
|
|
|
// Work out the pose of the head from the tracked model
|
|
cv::Vec6d pose_estimate = LandmarkDetector::GetPose(face_model, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy);
|
|
|
|
// Keeping track of FPS
|
|
fps_tracker.AddFrame();
|
|
|
|
// Displaying the tracking visualizations
|
|
visualizer.SetImage(rgb_image, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy);
|
|
visualizer.SetObservationLandmarks(face_model.detected_landmarks, face_model.detection_certainty, face_model.GetVisibilities());
|
|
visualizer.SetObservationPose(pose_estimate, face_model.detection_certainty);
|
|
visualizer.SetObservationGaze(gazeDirection0, gazeDirection1, LandmarkDetector::CalculateAllEyeLandmarks(face_model), LandmarkDetector::Calculate3DEyeLandmarks(face_model, sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy), face_model.detection_certainty);
|
|
visualizer.SetFps(fps_tracker.GetFPS());
|
|
// detect key presses (due to pecularities of OpenCV, you can get it when displaying images)
|
|
char character_press = visualizer.ShowObservation();
|
|
|
|
// restart the tracker
|
|
if (character_press == 'r')
|
|
{
|
|
face_model.Reset();
|
|
}
|
|
// quit the application
|
|
else if (character_press == 'q')
|
|
{
|
|
return(0);
|
|
}
|
|
|
|
// Grabbing the next frame in the sequence
|
|
rgb_image = sequence_reader.GetNextFrame();
|
|
|
|
}
|
|
|
|
// Reset the model, for the next video
|
|
face_model.Reset();
|
|
sequence_reader.Close();
|
|
|
|
sequence_number++;
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|