mirror of
https://gitcode.com/gh_mirrors/ope/OpenFace.git
synced 2025-12-30 04:52:29 +00:00
118 lines
4.3 KiB
C++
118 lines
4.3 KiB
C++
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
|
|
// all rights reserved.
|
|
//
|
|
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
|
//
|
|
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
|
|
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
|
//
|
|
// License can be found in OpenFace-license.txt
|
|
//
|
|
// * Any publications arising from the use of this software, including but
|
|
// not limited to academic journal and conference publications, technical
|
|
// reports and manuals, must cite at least one of the following works:
|
|
//
|
|
// OpenFace 2.0: Facial Behavior Analysis Toolkit
|
|
// Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency
|
|
// in IEEE International Conference on Automatic Face and Gesture Recognition, 2018
|
|
//
|
|
// Convolutional experts constrained local model for facial landmark detection.
|
|
// A. Zadeh, T. Baltrušaitis, and Louis-Philippe Morency,
|
|
// in Computer Vision and Pattern Recognition Workshops, 2017.
|
|
//
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
//
|
|
// Cross-dataset learning and person-specific normalisation for automatic Action Unit detection
|
|
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef __LANDMARK_DETECTION_VALIDATOR_h_
|
|
#define __LANDMARK_DETECTION_VALIDATOR_h_
|
|
|
|
// OpenCV includes
|
|
#include <opencv2/core/core.hpp>
|
|
|
|
// System includes
|
|
#include <vector>
|
|
|
|
// Local includes
|
|
#include "PAW.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace LandmarkDetector
|
|
{
|
|
//===========================================================================
|
|
//
|
|
// Checking if landmark detection was successful using a CNN
|
|
// Using multiple validators trained add different views
|
|
// The regressor outputs 1 for ideal alignment and 0 for worst alignment
|
|
//===========================================================================
|
|
class DetectionValidator
|
|
{
|
|
|
|
public:
|
|
|
|
// The orientations of each of the landmark detection validator
|
|
vector<cv::Vec3d> orientations;
|
|
|
|
// Piecewise affine warps to the reference shape (per orientation)
|
|
vector<PAW> paws;
|
|
|
|
//==========================================
|
|
// Convolutional Neural Network
|
|
|
|
// CNN layers for each view
|
|
// view -> layer
|
|
vector<vector<vector<vector<cv::Mat_<float> > > > > cnn_convolutional_layers;
|
|
vector<vector<cv::Mat_<float> > > cnn_convolutional_layers_weights;
|
|
vector<vector<cv::Mat_<float> > > cnn_convolutional_layers_im2col_precomp;
|
|
|
|
vector< vector<int> > cnn_subsampling_layers;
|
|
vector< vector<cv::Mat_<float> > > cnn_fully_connected_layers_weights;
|
|
vector< vector<cv::Mat_<float> > > cnn_fully_connected_layers_biases;
|
|
// NEW CNN: 0 - convolutional, 1 - max pooling (2x2 stride 2), 2 - fully connected, 3 - relu, 4 - sigmoid
|
|
vector<vector<int> > cnn_layer_types;
|
|
|
|
//==========================================
|
|
|
|
// Normalisation for face validation
|
|
vector<cv::Mat_<float> > mean_images;
|
|
vector<cv::Mat_<float> > standard_deviations;
|
|
|
|
// Default constructor
|
|
DetectionValidator(){;}
|
|
|
|
// Copy constructor
|
|
DetectionValidator(const DetectionValidator& other);
|
|
|
|
// Given an image, orientation and detected landmarks output the result of the appropriate regressor
|
|
float Check(const cv::Vec3d& orientation, const cv::Mat_<uchar>& intensity_img, cv::Mat_<float>& detected_landmarks);
|
|
|
|
// Reading in the model
|
|
void Read(string location);
|
|
|
|
// Getting the closest view center based on orientation
|
|
int GetViewId(const cv::Vec3d& orientation) const;
|
|
|
|
private:
|
|
|
|
// The actual regressor application on the image
|
|
|
|
// Convolutional Neural Network
|
|
double CheckCNN(const cv::Mat_<float>& warped_img, int view_id);
|
|
|
|
// A normalisation helper
|
|
void NormaliseWarpedToVector(const cv::Mat_<float>& warped_img, cv::Mat_<float>& feature_vec, int view_id);
|
|
|
|
};
|
|
|
|
}
|
|
#endif
|