Files
OpenFace/matlab_version/fitting/Fitting_from_bb_vis.m

163 lines
6.1 KiB
Matlab

function Fitting_from_bb_vis( Image, DepthImage, bounding_box, PDM, patchExperts, clmParams, out_dir, varargin)
%FITTING Summary of this function goes here
% Detailed explanation goes here
% the bounding box format is [minX, minY, maxX, maxY];
% the mean model shape
M = PDM.M;
num_points = numel(M) / 3;
if(any(strcmp(varargin,'orientation')))
orientation = varargin{find(strcmp(varargin, 'orientation'))+1};
rot = Euler2Rot(orientation);
else
rot = eye(3);
orientation = [0;0;0];
end
rot_m = rot * reshape(M, num_points, 3)';
width_model = max(rot_m(1,:)) - min(rot_m(1,:));
height_model = max(rot_m(2,:)) - min(rot_m(2,:));
a = (((bounding_box(3) - bounding_box(1)) / width_model) + ((bounding_box(4) - bounding_box(2))/ height_model)) / 2;
tx = (bounding_box(3) + bounding_box(1))/2;
ty = (bounding_box(4) + bounding_box(2))/2;
% correct it so that the bounding box is just around the minimum
% and maximum point in the initialised face
tx = tx - a*(min(rot_m(1,:)) + max(rot_m(1,:)))/2;
ty = ty - a*(min(rot_m(2,:)) + max(rot_m(2,:)))/2;
% visualisation of the initial state
%hold off;imshow(Image);hold on;plot(a*rot_m(1,:)+tx, a*rot_m(2,:)+ty,'.r');hold on;rectangle('Position', [bounding_box(1), bounding_box(2), bounding_box(3)-bounding_box(1), bounding_box(4)-bounding_box(2)]);
global_params = [a, 0, 0, 0, tx, ty]';
global_params(2:4) = orientation;
local_params = zeros(numel(PDM.E), 1);
if(any(strcmp(varargin,'gparam')))
global_params = varargin{find(strcmp(varargin, 'gparam'))+1};
end
if(any(strcmp(varargin,'lparam')))
local_params = varargin{find(strcmp(varargin, 'lparam'))+1};
end
scale = clmParams.startScale;
if(size(Image, 3) == 1)
GrayImage = Image;
else
GrayImage = rgb2gray(Image);
end
[heightImg, widthImg] = size(GrayImage);
% Some predefinitions for faster patch extraction
[xi, yi] = meshgrid(0:widthImg-1,0:heightImg-1);
xi = double(xi);
yi = double(yi);
GrayImageDb = double(GrayImage);
% multi iteration refinement using NU-RLMS in each one
i=1;
current_patch_scaling = patchExperts(scale).trainingScale;
visibilities = patchExperts(scale).visibilities;
view = GetView(patchExperts(scale).centers, global_params(2:4));
% The shape fitting is performed in the reference frame of the
% patch training scale
refGlobal = [current_patch_scaling, 0, 0, 0, 0, 0]';
% the reference shape
refShape = GetShapeOrtho(M, PDM.V, local_params, refGlobal);
% shape around which the patch experts will be evaluated in the original image
[shape2D] = GetShapeOrtho(M, PDM.V, local_params, global_params);
shape2D_img = shape2D(:,1:2);
% Create transform using a slightly modified version of Kabsch that
% takes scaling into account as well, in essence we get a
% similarity transform from current estimate to reference shape
[A_img2ref, T_img2ref, ~, ~] = AlignShapesWithScale(shape2D_img(:,1:2),refShape(:,1:2));
% Create a transform, from shape in image to reference shape
T = maketform('affine', [A_img2ref;T_img2ref]);
shape_2D_ref = tformfwd(T, shape2D_img);
% transform the current shape to the reference one, so we can
% interpolate
shape2D_in_ref = (A_img2ref * shape2D_img')';
sideSizeX = (clmParams.window_size(i,1) - 1)/2;
sideSizeY = (clmParams.window_size(i,2) - 1)/2;
patches = zeros(size(shape2D_in_ref,1), clmParams.window_size(i,1) * clmParams.window_size(i,2));
Ainv = inv(A_img2ref);
% extract patches on which patch experts will be evaluted
for l=1:size(shape2D_in_ref,1)
if(visibilities(view,l))
xs = (shape2D_in_ref(l,1)-sideSizeX):(shape2D_in_ref(l,1)+sideSizeX);
ys = (shape2D_in_ref(l,2)-sideSizeY):(shape2D_in_ref(l,2)+sideSizeY);
[xs, ys] = meshgrid(xs, ys);
pairs = [xs(:), ys(:)];
actualLocs = (Ainv * pairs')';
actualLocs(actualLocs(:,1) < 0,1) = 0;
actualLocs(actualLocs(:,2) < 0,2) = 0;
actualLocs(actualLocs(:,1) > widthImg - 1,1) = widthImg - 1;
actualLocs(actualLocs(:,2) > heightImg - 1,2) = heightImg - 1;
[t_patch] = interp2_mine(xi, yi, GrayImageDb, actualLocs(:,1), actualLocs(:,2), 'bilinear');
t_patch = reshape(t_patch, size(xs));
patches(l,:) = t_patch(:);
end
end
% Calculate patch responses, either SVR or CCNF
if(strcmp(patchExperts(scale).type, 'SVR'))
responses = PatchResponseSVM_multi_modal( patches, patchExperts(scale).patch_experts(view,:), visibilities(view,:), patchExperts(scale).normalisationOptionsCol, clmParams, clmParams.window_size(i,:));
for r=1:numel(responses)
out_patch = reshape(patches(r,:)/255, size(xs));
imwrite(out_patch, [out_dir, '/', num2str(r), '_a.png']);
imwrite(responses{r}/max(responses{r}(:)), [out_dir, '/', num2str(r), '_svr.png']);
end
elseif(strcmp(patchExperts(scale).type, 'CCNF'))
responses = PatchResponseCCNF( patches, patchExperts(scale).patch_experts(view,:), visibilities(view,:), patchExperts(scale), clmParams.window_size(i,:));
for r=1:numel(responses)
imwrite(responses{r}/max(responses{r}(:)), [out_dir, '/', num2str(r), '_lnf.png']);
end
elseif(strcmp(patchExperts(scale).type, 'DNN'))
responses = PatchResponseDNN( patches, patchExperts(scale).patch_experts(view,:), visibilities(view,:), patchExperts(scale), clmParams.window_size(i,:));
for r=1:numel(responses)
imwrite(responses{r}/max(responses{r}(:)), [out_dir, '/', num2str(r), '_dnn.png']);
end
end
end
function [id] = GetView(centers, rotation)
[~,id] = min(sum((centers * pi/180 - repmat(rotation', size(centers,1), 1)).^2,2));
end