mirror of
https://gitcode.com/gh_mirrors/ope/OpenFace.git
synced 2025-12-30 13:02:30 +00:00
158 lines
4.8 KiB
Matlab
158 lines
4.8 KiB
Matlab
function Script_CLNF_general()
|
|
|
|
addpath(genpath('../'));
|
|
|
|
% Replace this with the location of the IJB-FL data location
|
|
root_test_data = 'D:/Datasets/janus_labeled';
|
|
[images, detections, labels] = Collect_JANUS_imgs(root_test_data);
|
|
|
|
%% loading the patch experts
|
|
|
|
clmParams = struct;
|
|
|
|
clmParams.window_size = [25,25; 23,23; 21,21];
|
|
clmParams.numPatchIters = size(clmParams.window_size,1);
|
|
|
|
[patches] = Load_Patch_Experts( '../models/general/', 'ccnf_patches_*_general.mat', [], [], clmParams);
|
|
|
|
%% Fitting the model to the provided image
|
|
|
|
% the default PDM to use
|
|
pdmLoc = ['../models/pdm/pdm_68_aligned_wild.mat'];
|
|
|
|
load(pdmLoc);
|
|
|
|
pdm = struct;
|
|
pdm.M = double(M);
|
|
pdm.E = double(E);
|
|
pdm.V = double(V);
|
|
|
|
clmParams.regFactor = [35, 27, 20];
|
|
clmParams.sigmaMeanShift = [1.25, 1.375, 1.5];
|
|
clmParams.tikhonov_factor = [2.5, 5, 7.5];
|
|
|
|
clmParams.startScale = 1;
|
|
clmParams.num_RLMS_iter = 10;
|
|
clmParams.fTol = 0.01;
|
|
clmParams.useMultiScale = true;
|
|
clmParams.use_multi_modal = 1;
|
|
clmParams.multi_modal_types = patches(1).multi_modal_types;
|
|
|
|
% Loading the final scale
|
|
[clmParams_inner, pdm_inner] = Load_CLM_params_inner();
|
|
clmParams_inner.window_size = [17,17;19,19;21,21;23,23];
|
|
inds_inner = 18:68;
|
|
[patches_inner] = Load_Patch_Experts( '../models/general/', 'ccnf_patches_*general_no_out.mat', [], [], clmParams_inner);
|
|
clmParams_inner.multi_modal_types = patches_inner(1).multi_modal_types;
|
|
|
|
% for recording purposes
|
|
experiment.params = clmParams;
|
|
|
|
num_points = numel(M)/3;
|
|
|
|
shapes_all = zeros(size(labels,2),size(labels,3), size(labels,1));
|
|
labels_all = zeros(size(labels,2),size(labels,3), size(labels,1));
|
|
lhoods = zeros(numel(images),1);
|
|
all_lmark_lhoods = zeros(num_points, numel(images));
|
|
all_views_used = zeros(numel(images),1);
|
|
|
|
% Use the multi-hypothesis model, as bounding box tells nothing about
|
|
% orientation
|
|
multi_view = true;
|
|
verbose = false; % set to true to visualise the fitting
|
|
|
|
tic
|
|
for i=1:numel(images)
|
|
|
|
image = imread(images(i).img);
|
|
image_orig = image;
|
|
|
|
if(size(image,3) == 3)
|
|
image = rgb2gray(image);
|
|
end
|
|
|
|
bbox = detections(i,:);
|
|
|
|
% have a multi-view version
|
|
if(multi_view)
|
|
|
|
views = [0,0,0; 0,-30,0; 0,30,0; 0,-55,0; 0,55,0; 0,0,30; 0,0,-30; 0,-90,0; 0,90,0; 0,-70,40; 0,70,-40];
|
|
views = views * pi/180;
|
|
|
|
shapes = zeros(num_points, 2, size(views,1));
|
|
ls = zeros(size(views,1),1);
|
|
lmark_lhoods = zeros(num_points,size(views,1));
|
|
views_used = zeros(num_points,size(views,1));
|
|
|
|
% Find the best orientation
|
|
for v = 1:size(views,1)
|
|
[shapes(:,:,v),~,~,ls(v),lmark_lhoods(:,v),views_used(v)] = Fitting_from_bb(image, [], bbox, pdm, patches, clmParams, 'orientation', views(v,:));
|
|
end
|
|
|
|
[lhood, v_ind] = max(ls);
|
|
lmark_lhood = lmark_lhoods(:,v_ind);
|
|
|
|
shape = shapes(:,:,v_ind);
|
|
view_used = views_used(v);
|
|
|
|
else
|
|
[shape,~,~,lhood,lmark_lhood,view_used] = Fitting_from_bb(image, [], bbox, pdm, patches, clmParams);
|
|
end
|
|
|
|
% Perform inner face fitting
|
|
shape_inner = shape(inds_inner,:);
|
|
|
|
[ a, R, T, ~, l_params, err] = fit_PDM_ortho_proj_to_2D_no_reg(pdm_inner.M, pdm_inner.E, pdm_inner.V, shape_inner);
|
|
if(a > 0.9)
|
|
g_param = [a; Rot2Euler(R)'; T];
|
|
|
|
bbox = [min(shape_inner(:,1)), min(shape_inner(:,2)), max(shape_inner(:,1)), max(shape_inner(:,2))];
|
|
|
|
[shape_inner] = Fitting_from_bb(image, [], bbox, pdm_inner, patches_inner, clmParams_inner, 'gparam', g_param, 'lparam', l_params);
|
|
|
|
% Now after detections incorporate the eyes back
|
|
% into the face model
|
|
|
|
shape(inds_inner, :) = shape_inner;
|
|
|
|
[ ~, ~, ~, ~, ~, ~, shape_fit] = fit_PDM_ortho_proj_to_2D_no_reg(pdm.M, pdm.E, pdm.V, shape);
|
|
|
|
all_lmark_lhoods(:,i) = lmark_lhood;
|
|
all_views_used(i) = view_used;
|
|
|
|
shapes_all(:,:,i) = shape_fit;
|
|
else
|
|
shapes_all(:,:,i) = shape;
|
|
end
|
|
labels_all(:,:,i) = labels(i,:,:);
|
|
|
|
if(mod(i, 200)==0)
|
|
fprintf('%d done\n', i );
|
|
end
|
|
|
|
lhoods(i) = lhood;
|
|
|
|
if(verbose)
|
|
v_points = sum(squeeze(labels(i,:,:)),2) > 0;
|
|
DrawFaceOnFig(image_orig, shape, bbox, v_points);
|
|
end
|
|
|
|
end
|
|
toc
|
|
|
|
experiment.errors_normed = compute_error(labels_all, shapes_all - 1.0);
|
|
experiment.lhoods = lhoods;
|
|
experiment.shapes = shapes_all;
|
|
experiment.labels = labels_all;
|
|
experiment.all_lmark_lhoods = all_lmark_lhoods;
|
|
experiment.all_views_used = all_views_used;
|
|
|
|
fprintf('Done: mean normed error %.3f median normed error %.4f\n', ...
|
|
mean(experiment.errors_normed), median(experiment.errors_normed));
|
|
|
|
%%
|
|
output_results = 'results/results_wild_clnf_general.mat';
|
|
save(output_results, 'experiment');
|
|
|
|
end
|