Files
OpenFace/lib/local/CppInerop/LandmarkDetectorInterop.h

466 lines
13 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace 2.0: Facial Behavior Analysis Toolkit
// Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency
// in IEEE International Conference on Automatic Face and Gesture Recognition, 2018
//
// Convolutional experts constrained local model for facial landmark detection.
// A. Zadeh, T. Baltrušaitis, and Louis-Philippe Morency,
// in Computer Vision and Pattern Recognition Workshops, 2017.
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-specific normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
///////////////////////////////////////////////////////////////////////////////
#ifndef __LANDMARK_DETECTOR_INTEROP_h_
#define __LANDMARK_DETECTOR_INTEROP_h_
#pragma once
#pragma managed
#include <msclr\marshal.h>
#include <msclr\marshal_cppstd.h>
#pragma unmanaged
// Include all the unmanaged things we need.
#include <opencv2/core/core.hpp>
#include "opencv2/objdetect.hpp"
#include "opencv2/calib3d.hpp"
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
// Allows to overcome boost name clash stuff with C++ CLI
#ifdef __cplusplus_cli
#define generic __identifier(generic)
#endif
#include <OpenCVWrappers.h>
#include <LandmarkCoreIncludes.h>
#include <Face_utils.h>
#include <FaceAnalyser.h>
#include <VisualizationUtils.h>
#ifdef __cplusplus_cli
#undef generic
#endif
using namespace System::Collections::Generic;
#pragma managed
namespace CppInterop {
namespace LandmarkDetector {
public ref class FaceModelParameters
{
public:
::LandmarkDetector::FaceModelParameters* params;
public:
// Initialise the parameters
FaceModelParameters(System::String^ root, bool ceclm, bool clnf, bool clm)
{
std::string root_std = msclr::interop::marshal_as<std::string>(root);
vector<std::string> args;
args.push_back(root_std);
std::string model_loc = "model/main_ceclm_general.txt";
if (ceclm)
{
model_loc = "model/main_ceclm_general.txt";
}
else if(clnf)
{
model_loc = "model/main_clnf_general.txt";
}
else if (clm)
{
model_loc = "model/main_clm_general.txt";
}
args.push_back("-mloc");
args.push_back(model_loc);
params = new ::LandmarkDetector::FaceModelParameters(args);
}
// TODO this could have optimize for demo mode (also could appropriately update sigma, reg_factor as well)
void optimiseForVideo()
{
params->window_sizes_small = vector<int>(4);
params->window_sizes_init = vector<int>(4);
// For fast tracking
params->window_sizes_small[0] = 0;
params->window_sizes_small[1] = 9;
params->window_sizes_small[2] = 7;
params->window_sizes_small[3] = 0;
// Just for initialisation
params->window_sizes_init.at(0) = 11;
params->window_sizes_init.at(1) = 9;
params->window_sizes_init.at(2) = 7;
params->window_sizes_init.at(3) = 5;
// For first frame use the initialisation
params->window_sizes_current = params->window_sizes_init;
params->multi_view = false;
params->num_optimisation_iteration = 5;
params->sigma = 1.5;
params->reg_factor = 25;
params->weight_factor = 0;
// Parameter optimizations for CE-CLM
if (params->curr_landmark_detector == ::LandmarkDetector::FaceModelParameters::CECLM_DETECTOR)
{
params->sigma = 1.5f * params->sigma;
params->reg_factor = 0.9f * params->reg_factor;
}
}
bool IsCECLM()
{
return params->curr_landmark_detector == ::LandmarkDetector::FaceModelParameters::CECLM_DETECTOR;
}
bool IsCLNF()
{
return params->curr_landmark_detector == ::LandmarkDetector::FaceModelParameters::CLNF_DETECTOR;
}
bool IsCLM()
{
return params->curr_landmark_detector == ::LandmarkDetector::FaceModelParameters::CLM_DETECTOR;
}
System::String^ GetMTCNNLocation()
{
return gcnew System::String(params->mtcnn_face_detector_location.c_str());
}
System::String^ GetHaarLocation()
{
return gcnew System::String(params->haar_face_detector_location.c_str());
}
void SetFaceDetector(bool haar, bool hog, bool cnn)
{
if (cnn)
{
params->curr_face_detector = params->MTCNN_DETECTOR;
}
else if (hog)
{
params->curr_face_detector = params->HOG_SVM_DETECTOR;
}
else if (haar)
{
params->curr_face_detector = params->HAAR_DETECTOR;
}
}
void optimiseForImages()
{
params->window_sizes_init = vector<int>(4);
params->window_sizes_init[0] = 15;
params->window_sizes_init[1] = 13;
params->window_sizes_init[2] = 11;
params->window_sizes_init[3] = 11;
params->multi_view = true;
params->sigma = 1.25;
params->reg_factor = 35;
params->weight_factor = 2.5;
params->num_optimisation_iteration = 10;
// Parameter optimizations for CE-CLM
if (params->curr_landmark_detector == ::LandmarkDetector::FaceModelParameters::MTCNN_DETECTOR)
{
params->sigma = 1.5f * params->sigma;
params->reg_factor = 0.9f * params->reg_factor;
}
}
::LandmarkDetector::FaceModelParameters* getParams() {
return params;
}
!FaceModelParameters()
{
delete params;
}
~FaceModelParameters()
{
this->!FaceModelParameters();
}
};
public ref class CLNF
{
public:
// A pointer to the CLNF landmark detector
::LandmarkDetector::CLNF* clnf;
public:
// Wrapper functions for the relevant CLNF functionality
CLNF() : clnf(new ::LandmarkDetector::CLNF()) { }
CLNF(FaceModelParameters^ params)
{
clnf = new ::LandmarkDetector::CLNF(params->getParams()->model_location);
}
!CLNF()
{
delete clnf;
}
~CLNF()
{
this->!CLNF();
}
bool isLoaded()
{
return clnf->loaded_successfully;
}
::LandmarkDetector::CLNF* getCLNF() {
return clnf;
}
void Reset() {
clnf->Reset();
}
void Reset(double x, double y) {
clnf->Reset(x, y);
}
bool HasEyeModel() {
return clnf->eye_model;
}
double GetConfidence()
{
return clnf->detection_certainty;
}
bool DetectLandmarksInVideo(OpenCVWrappers::RawImage^ rgb_image, FaceModelParameters^ modelParams, OpenCVWrappers::RawImage^ gray_image) {
return ::LandmarkDetector::DetectLandmarksInVideo(rgb_image->Mat, *clnf, *modelParams->getParams(), gray_image->Mat);
}
bool DetectFaceLandmarksInImage(OpenCVWrappers::RawImage^ rgb_image, FaceModelParameters^ modelParams, OpenCVWrappers::RawImage^ gray_image) {
return ::LandmarkDetector::DetectLandmarksInImage(rgb_image->Mat, *clnf, *modelParams->getParams(), gray_image->Mat);
}
bool DetectFaceLandmarksInImage(OpenCVWrappers::RawImage^ rgb_image, Rect^ bounding_box, FaceModelParameters^ modelParams, OpenCVWrappers::RawImage^ gray_image) {
cv::Rect_<float> bbox(bounding_box->Left, bounding_box->Top, bounding_box->Width, bounding_box->Height);
return ::LandmarkDetector::DetectLandmarksInImage(rgb_image->Mat, bbox, *clnf, *modelParams->getParams(), gray_image->Mat);
}
void GetPoseWRTCamera(List<float>^ pose, float fx, float fy, float cx, float cy) {
auto pose_vec = ::LandmarkDetector::GetPoseWRTCamera(*clnf, fx, fy, cx, cy);
pose->Clear();
for(int i = 0; i < 6; ++i)
{
pose->Add(pose_vec[i]);
}
}
void GetPose(List<float>^ pose, float fx, float fy, float cx, float cy) {
auto pose_vec = ::LandmarkDetector::GetPose(*clnf, fx, fy, cx, cy);
pose->Clear();
for(int i = 0; i < 6; ++i)
{
pose->Add(pose_vec[i]);
}
}
// Get the mask of which landmarks are currently visible (not self-occluded)
List<bool>^ GetVisibilities()
{
cv::Mat_<int> vis = clnf->GetVisibilities();
List<bool>^ visibilities = gcnew List<bool>();
for (auto vis_it = vis.begin(); vis_it != vis.end(); vis_it++)
{
visibilities->Add(*vis_it != 0);
}
return visibilities;
}
List<System::Tuple<float,float>^>^ CalculateVisibleLandmarks() {
vector<cv::Point2f> vecLandmarks = ::LandmarkDetector::CalculateVisibleLandmarks(*clnf);
auto landmarks = gcnew System::Collections::Generic::List<System::Tuple<float, float>^>();
for(cv::Point2f p : vecLandmarks) {
landmarks->Add(gcnew System::Tuple<float, float>(p.x, p.y));
}
return landmarks;
}
List<System::Tuple<float, float>^>^ CalculateAllLandmarks() {
vector<cv::Point2f> vecLandmarks = ::LandmarkDetector::CalculateAllLandmarks(*clnf);
auto landmarks = gcnew List<System::Tuple<float, float>^>();
for (cv::Point2f p : vecLandmarks) {
landmarks->Add(gcnew System::Tuple<float, float>(p.x, p.y));
}
return landmarks;
}
List<System::Tuple<float, float>^>^ CalculateAllEyeLandmarks() {
vector<cv::Point2f> vecLandmarks = ::LandmarkDetector::CalculateAllEyeLandmarks(*clnf);
auto landmarks = gcnew System::Collections::Generic::List<System::Tuple<float, float>^>();
for (cv::Point2f p : vecLandmarks) {
landmarks->Add(gcnew System::Tuple<float, float>(p.x, p.y));
}
return landmarks;
}
List<System::Tuple<float, float, float>^>^ CalculateAllEyeLandmarks3D(float fx, float fy, float cx, float cy) {
vector<cv::Point3f> vecLandmarks = ::LandmarkDetector::Calculate3DEyeLandmarks(*clnf, fx, fy, cx, cy);
auto landmarks = gcnew System::Collections::Generic::List<System::Tuple<float, float, float>^>();
for (cv::Point3f p : vecLandmarks) {
landmarks->Add(gcnew System::Tuple<float, float, float>(p.x, p.y, p.z));
}
return landmarks;
}
List<System::Tuple<float, float>^>^ CalculateVisibleEyeLandmarks() {
vector<cv::Point2f> vecLandmarks = ::LandmarkDetector::CalculateVisibleEyeLandmarks(*clnf);
auto landmarks = gcnew System::Collections::Generic::List<System::Tuple<float, float>^>();
for (cv::Point2f p : vecLandmarks) {
landmarks->Add(gcnew System::Tuple<float, float>(p.x, p.y));
}
return landmarks;
}
List<System::Tuple<float, float, float>^>^ Calculate3DLandmarks(float fx, float fy, float cx, float cy) {
cv::Mat_<float> shape3D = clnf->GetShape(fx, fy, cx, cy);
auto landmarks_3D = gcnew List<System::Tuple<float, float, float>^>();
for(int i = 0; i < shape3D.cols; ++i)
{
landmarks_3D->Add(gcnew System::Tuple<float, float, float>(shape3D.at<float>(0, i), shape3D.at<float>(1, i), shape3D.at<float>(2, i)));
}
return landmarks_3D;
}
List<System::Tuple<System::Windows::Point, System::Windows::Point>^>^ CalculateBox(float fx, float fy, float cx, float cy) {
cv::Vec6f pose = ::LandmarkDetector::GetPose(*clnf, fx,fy, cx, cy);
vector<pair<cv::Point2f, cv::Point2f>> vecLines = ::Utilities::CalculateBox(pose, fx, fy, cx, cy);
auto lines = gcnew List<System::Tuple<System::Windows::Point,System::Windows::Point>^>();
for(pair<cv::Point2f, cv::Point2f> line : vecLines) {
lines->Add(gcnew System::Tuple<System::Windows::Point, System::Windows::Point>(System::Windows::Point(line.first.x, line.first.y), System::Windows::Point(line.second.x, line.second.y)));
}
return lines;
}
int GetNumPoints()
{
return clnf->pdm.NumberOfPoints();
}
int GetNumModes()
{
return clnf->pdm.NumberOfModes();
}
// Getting the non-rigid shape parameters describing the facial expression
List<float>^ GetNonRigidParams()
{
auto non_rigid_params = gcnew List<float>();
for (int i = 0; i < clnf->params_local.rows; ++i)
{
non_rigid_params->Add(clnf->params_local.at<float>(i));
}
return non_rigid_params;
}
// Getting the rigid shape parameters describing face scale rotation and translation (scale,rotx,roty,rotz,tx,ty)
List<float>^ GetRigidParams()
{
auto rigid_params = gcnew List<float>();
for (size_t i = 0; i < 6; ++i)
{
rigid_params->Add(clnf->params_global[i]);
}
return rigid_params;
}
// Rigid params followed by non-rigid ones
List<float>^ GetParams()
{
auto all_params = GetRigidParams();
all_params->AddRange(GetNonRigidParams());
return all_params;
}
};
}
}
#endif