Files
OpenFace/lib/local/LandmarkDetector/include/LandmarkDetectionValidator.h

118 lines
4.3 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
//
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace 2.0: Facial Behavior Analysis Toolkit
// Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency
// in IEEE International Conference on Automatic Face and Gesture Recognition, 2018
//
// Convolutional experts constrained local model for facial landmark detection.
// A. Zadeh, T. Baltrušaitis, and Louis-Philippe Morency,
// in Computer Vision and Pattern Recognition Workshops, 2017.
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-specific normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
///////////////////////////////////////////////////////////////////////////////
#ifndef __LANDMARK_DETECTION_VALIDATOR_h_
#define __LANDMARK_DETECTION_VALIDATOR_h_
// OpenCV includes
#include <opencv2/core/core.hpp>
// System includes
#include <vector>
// Local includes
#include "PAW.h"
using namespace std;
namespace LandmarkDetector
{
//===========================================================================
//
// Checking if landmark detection was successful using a CNN
// Using multiple validators trained add different views
// The regressor outputs 1 for ideal alignment and 0 for worst alignment
//===========================================================================
class DetectionValidator
{
public:
// The orientations of each of the landmark detection validator
vector<cv::Vec3d> orientations;
// Piecewise affine warps to the reference shape (per orientation)
vector<PAW> paws;
//==========================================
// Convolutional Neural Network
// CNN layers for each view
// view -> layer
vector<vector<vector<vector<cv::Mat_<float> > > > > cnn_convolutional_layers;
vector<vector<cv::Mat_<float> > > cnn_convolutional_layers_weights;
vector<vector<cv::Mat_<float> > > cnn_convolutional_layers_im2col_precomp;
vector< vector<int> > cnn_subsampling_layers;
vector< vector<cv::Mat_<float> > > cnn_fully_connected_layers_weights;
vector< vector<cv::Mat_<float> > > cnn_fully_connected_layers_biases;
// NEW CNN: 0 - convolutional, 1 - max pooling (2x2 stride 2), 2 - fully connected, 3 - relu, 4 - sigmoid
vector<vector<int> > cnn_layer_types;
//==========================================
// Normalisation for face validation
vector<cv::Mat_<float> > mean_images;
vector<cv::Mat_<float> > standard_deviations;
// Default constructor
DetectionValidator(){;}
// Copy constructor
DetectionValidator(const DetectionValidator& other);
// Given an image, orientation and detected landmarks output the result of the appropriate regressor
float Check(const cv::Vec3d& orientation, const cv::Mat_<uchar>& intensity_img, cv::Mat_<float>& detected_landmarks);
// Reading in the model
void Read(string location);
// Getting the closest view center based on orientation
int GetViewId(const cv::Vec3d& orientation) const;
private:
// The actual regressor application on the image
// Convolutional Neural Network
double CheckCNN(const cv::Mat_<float>& warped_img, int view_id);
// A normalisation helper
void NormaliseWarpedToVector(const cv::Mat_<float>& warped_img, cv::Mat_<float>& feature_vec, int view_id);
};
}
#endif