Files
OpenFace/matlab_version/experiments_300W/Script_CLNF_wild.m

98 lines
2.5 KiB
Matlab

function Script_CLNF_wild()
addpath(genpath('../'));
% Replace this with the location of in 300 faces in the wild data
if(exist([getenv('USERPROFILE') '/Dropbox/AAM/test data/'], 'file'))
root_test_data = [getenv('USERPROFILE') '/Dropbox/AAM/test data/'];
else
root_test_data = 'F:\Dropbox\AAM\test data/';
end
[images, detections, labels] = Collect_wild_imgs(root_test_data);
%% loading the patch experts and pdms
[ patches, pdm, clmParams ] = Load_CLNF_wild();
%views = [0,0,0];
% Use the multi-hypothesis model, as bounding box tells nothing about
% orientation
views = [0,0,0; 0,-30,0; 0,30,0; 0,0,30; 0,0,-30;];
views = views * pi/180;
% for recording purposes
experiment.params = clmParams;
%% Change if you want to visualize the outputs
verbose = false;
output_img = false;
if(output_img)
output_root = './clnf_out_wild/';
if(~exist(output_root, 'dir'))
mkdir(output_root);
end
end
if(verbose)
f = figure;
end
%% For recording
shapes_all = zeros(size(labels,2),size(labels,3), size(labels,1));
labels_all = zeros(size(labels,2),size(labels,3), size(labels,1));
lhoods = zeros(numel(images),1);
%% Fitting the model to the provided image
tic
for i=1:numel(images)
image = imread(images(i).img);
image_orig = image;
if(size(image,3) == 3)
image = rgb2gray(image);
end
bbox = detections(i,:);
[shape,~,~,lhood,lmark_lhood,view_used] = Fitting_from_bb_multi_hyp(image, [], bbox, pdm, patches, clmParams, views);
shapes_all(:,:,i) = shape;
labels_all(:,:,i) = labels(i,:,:);
if(mod(i, 200)==0)
fprintf('%d done\n', i );
end
lhoods(i) = lhood;
if(output_img)
v_points = sum(squeeze(labels(i,:,:)),2) > 0;
DrawFaceOnImg(image_orig, shape, sprintf('%s/%s%d.jpg', output_root, 'fit', i), bbox, v_points);
end
if(verbose)
v_points = sum(squeeze(labels(i,:,:)),2) > 0;
DrawFaceOnFig(image_orig, shape, bbox, v_points);
end
end
toc
experiment.errors_normed = compute_error(labels_all, shapes_all + 1.0);
experiment.lhoods = lhoods;
experiment.shapes = shapes_all;
experiment.labels = labels_all;
fprintf('Done: mean normed error %.3f median normed error %.4f\n', ...
mean(experiment.errors_normed), median(experiment.errors_normed));
%%
output_results = 'results/results_clnf_wild.mat';
save(output_results, 'experiment');
end