mirror of
https://gitcode.com/gh_mirrors/ope/OpenFace.git
synced 2026-02-14 03:20:19 +00:00
98 lines
2.5 KiB
Matlab
98 lines
2.5 KiB
Matlab
function Script_CLNF_wild()
|
|
|
|
addpath(genpath('../'));
|
|
|
|
% Replace this with the location of in 300 faces in the wild data
|
|
if(exist([getenv('USERPROFILE') '/Dropbox/AAM/test data/'], 'file'))
|
|
root_test_data = [getenv('USERPROFILE') '/Dropbox/AAM/test data/'];
|
|
else
|
|
root_test_data = 'F:\Dropbox\AAM\test data/';
|
|
end
|
|
|
|
[images, detections, labels] = Collect_wild_imgs(root_test_data);
|
|
%% loading the patch experts and pdms
|
|
|
|
[ patches, pdm, clmParams ] = Load_CLNF_wild();
|
|
%views = [0,0,0];
|
|
% Use the multi-hypothesis model, as bounding box tells nothing about
|
|
% orientation
|
|
views = [0,0,0; 0,-30,0; 0,30,0; 0,0,30; 0,0,-30;];
|
|
views = views * pi/180;
|
|
|
|
% for recording purposes
|
|
experiment.params = clmParams;
|
|
|
|
%% Change if you want to visualize the outputs
|
|
verbose = false;
|
|
output_img = false;
|
|
|
|
if(output_img)
|
|
output_root = './clnf_out_wild/';
|
|
if(~exist(output_root, 'dir'))
|
|
mkdir(output_root);
|
|
end
|
|
end
|
|
if(verbose)
|
|
f = figure;
|
|
end
|
|
|
|
%% For recording
|
|
|
|
shapes_all = zeros(size(labels,2),size(labels,3), size(labels,1));
|
|
labels_all = zeros(size(labels,2),size(labels,3), size(labels,1));
|
|
lhoods = zeros(numel(images),1);
|
|
|
|
%% Fitting the model to the provided image
|
|
|
|
tic
|
|
for i=1:numel(images)
|
|
|
|
image = imread(images(i).img);
|
|
image_orig = image;
|
|
|
|
if(size(image,3) == 3)
|
|
image = rgb2gray(image);
|
|
end
|
|
|
|
bbox = detections(i,:);
|
|
|
|
[shape,~,~,lhood,lmark_lhood,view_used] = Fitting_from_bb_multi_hyp(image, [], bbox, pdm, patches, clmParams, views);
|
|
|
|
shapes_all(:,:,i) = shape;
|
|
|
|
labels_all(:,:,i) = labels(i,:,:);
|
|
|
|
if(mod(i, 200)==0)
|
|
fprintf('%d done\n', i );
|
|
end
|
|
|
|
lhoods(i) = lhood;
|
|
|
|
|
|
if(output_img)
|
|
v_points = sum(squeeze(labels(i,:,:)),2) > 0;
|
|
DrawFaceOnImg(image_orig, shape, sprintf('%s/%s%d.jpg', output_root, 'fit', i), bbox, v_points);
|
|
end
|
|
|
|
if(verbose)
|
|
v_points = sum(squeeze(labels(i,:,:)),2) > 0;
|
|
DrawFaceOnFig(image_orig, shape, bbox, v_points);
|
|
end
|
|
|
|
end
|
|
toc
|
|
|
|
experiment.errors_normed = compute_error(labels_all, shapes_all + 1.0);
|
|
experiment.lhoods = lhoods;
|
|
experiment.shapes = shapes_all;
|
|
experiment.labels = labels_all;
|
|
|
|
fprintf('Done: mean normed error %.3f median normed error %.4f\n', ...
|
|
mean(experiment.errors_normed), median(experiment.errors_normed));
|
|
|
|
%%
|
|
output_results = 'results/results_clnf_wild.mat';
|
|
save(output_results, 'experiment');
|
|
|
|
end
|