Compute embeddings

This commit is contained in:
Marcos Rodrigo
2023-09-21 12:49:51 +02:00
parent 2a140a086f
commit 23b4ba0a32

View File

@@ -1,4 +1,12 @@
import os
import pickle
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
from vit_keras import vit
from scipy.spatial.distance import cosine
from sklearn.metrics import roc_curve, auc
def remove_empty_directories():
@@ -126,6 +134,15 @@ def get_data():
return data
def preprocess_image(img_path):
img_ = tf.io.read_file(img_path)
img_ = tf.image.decode_jpeg(img_, channels=3)
img_ = tf.image.convert_image_dtype(img_, dtype=tf.float32)
img_ = tf.image.resize(img_, [224, 224])
img_ = tf.expand_dims(img_, axis=0)
return img_
"""
CREATE DATASET
"""
@@ -141,3 +158,136 @@ remove_empty_directories()
UNIQUE_NAMES = get_unique_names()
DATA_HISTOGRAM = get_histogram()
DATA = get_data()
"""
LOAD MODELS
"""
IMAGE_SIZE = 224
NUM_CLASSES = 8631
""" ViT_B32 """
vit_model = vit.vit_b32(
image_size=IMAGE_SIZE,
pretrained=True,
include_top=False,
pretrained_top=False,
)
y = tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')(vit_model.output)
vit_model = tf.keras.models.Model(inputs=vit_model.input, outputs=y)
vit_model.load_weights("./saved_results/Models/ViT_B32/checkpoint").expect_partial() # suppresses warnings
vit_model = tf.keras.models.Model(inputs=vit_model.input, outputs=vit_model.layers[-2].output)
vit_model.summary()
""" ResNet_50 """
resnet50_model = tf.keras.applications.ResNet50(
include_top=False,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = tf.keras.layers.GlobalAvgPool2D()(resnet50_model.output)
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform())(Y)
resnet50_model = tf.keras.models.Model(inputs=resnet50_model.input, outputs=Y, name='ResNet50')
resnet50_model.load_weights("./saved_results/Models/ResNet_50/checkpoint").expect_partial() # suppresses warnings
resnet50_model = tf.keras.models.Model(inputs=resnet50_model.input, outputs=resnet50_model.layers[-2].output)
resnet50_model.summary()
""" VGG_16 """
vgg16_model = tf.keras.applications.VGG16(
include_top=True,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = vgg16_model.layers[-2].output
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform)(Y)
vgg16_model = tf.keras.models.Model(inputs=vgg16_model.input, outputs=Y, name='VGG16')
vgg16_model.load_weights("./saved_results/Models/VGG_16/checkpoint").expect_partial() # suppresses warnings
vgg16_model = tf.keras.models.Model(inputs=vgg16_model.input, outputs=vgg16_model.layers[-2].output)
vgg16_model.summary()
""" Inception_v3 """
inception_model = tf.keras.applications.InceptionV3(
include_top=False,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = tf.keras.layers.GlobalAvgPool2D()(inception_model.output)
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform())(Y)
inception_model = tf.keras.models.Model(inputs=inception_model.input, outputs=Y, name='InceptionV3')
inception_model.summary()
inception_model.load_weights("./saved_results/Models/Inception_V3/checkpoint").expect_partial() # suppresses warnings
inception_model = tf.keras.models.Model(inputs=inception_model.input, outputs=inception_model.layers[-2].output)
inception_model.summary()
""" MobileNet_v2 """
mobilenet_model = tf.keras.applications.MobileNetV2(
include_top=False,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = tf.keras.layers.GlobalAvgPool2D()(mobilenet_model.output)
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform())(Y)
mobilenet_model = tf.keras.models.Model(inputs=mobilenet_model.input, outputs=Y, name='MobileNetV2')
mobilenet_model.summary()
mobilenet_model.load_weights("./saved_results/Models/MobileNet_V2/checkpoint").expect_partial() # suppresses warnings
mobilenet_model = tf.keras.models.Model(inputs=mobilenet_model.input, outputs=mobilenet_model.layers[-2].output)
mobilenet_model.summary()
""" EfficientNet_B0 """
efficientnetB0_model = tf.keras.applications.EfficientNetB0(
include_top=False,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = tf.keras.layers.GlobalAvgPool2D()(efficientnetB0_model.output)
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform())(Y)
efficientnetB0_model = tf.keras.models.Model(inputs=efficientnetB0_model.input, outputs=Y, name='EfficientNetB0')
efficientnetB0_model.summary()
efficientnetB0_model.load_weights("./saved_results/Models/EfficientNet_B0/checkpoint").expect_partial() # suppresses warnings
efficientnetB0_model = tf.keras.models.Model(inputs=efficientnetB0_model.input, outputs=efficientnetB0_model.layers[-2].output)
efficientnetB0_model.summary()
"""
PREPROCESS IMAGES AND COMPUTE EMBEDDINGS
"""
try:
with open('./saved_results/Tests/RealWorldOccludedFaces/embeddings.pickle', 'rb') as embeddings_file:
DATA = pickle.load(embeddings_file)
except FileNotFoundError:
for person in DATA.keys():
for category in DATA[person].keys():
for element in DATA[person][category].keys():
img = preprocess_image(DATA[person][category][element]['file'])
embeddings_vit = vit_model(img).numpy()
embeddings_resnet = resnet50_model(img).numpy()
embeddings_vgg16 = vgg16_model(img).numpy()
embeddings_inception = inception_model(img).numpy()
embeddings_mobilenet = mobilenet_model(img).numpy()
embeddings_efficientnet = efficientnetB0_model(img).numpy()
DATA[person][category][element]['embeddings']['vit'] = embeddings_vit
DATA[person][category][element]['embeddings']['resnet'] = embeddings_resnet
DATA[person][category][element]['embeddings']['vgg'] = embeddings_vgg16
DATA[person][category][element]['embeddings']['inception'] = embeddings_inception
DATA[person][category][element]['embeddings']['mobilenet'] = embeddings_mobilenet
DATA[person][category][element]['embeddings']['efficientnet'] = embeddings_efficientnet
with open('./saved_results/Tests/RealWorldOccludedFaces/embeddings.pickle', 'wb') as embeddings_file:
pickle.dump(DATA, embeddings_file)