Preprocess mugshot images

This commit is contained in:
mrt
2023-09-13 16:41:46 +02:00
parent 1db557a0b4
commit 7b205c24b9

View File

@@ -1,8 +1,18 @@
import os
import pickle
import tensorflow as tf
from vit_keras import vit
def preprocess_image(img_path):
img_ = tf.io.read_file(img_path)
img_ = tf.image.decode_jpeg(img_, channels=3)
img_ = tf.image.convert_image_dtype(img_, dtype=tf.float32)
img_ = tf.image.resize(img_, [224, 224])
img_ = tf.expand_dims(img_, axis=0)
return img_
"""
CREATE DATASET
"""
@@ -11,19 +21,44 @@ MUGSHOT_DIR = f'{BASE_DIR}/mugshot_frontal_cropped_all'
SURVEILLANCE_DIR = f'{BASE_DIR}/surveillance_cameras_all'
mugshot_data = {}
for file in os.listdir(MUGSHOT_DIR):
for file in sorted(os.listdir(MUGSHOT_DIR)):
person = file.split('_')[0]
file_path = os.path.join(MUGSHOT_DIR, file)
mugshot_data[person] = {'file': file_path, 'embeddings': None}
mugshot_data[person] = {
'file': file_path,
'embeddings': {
'vit': None,
'resnet': None,
'vgg': None,
'inception': None,
'mobilenet': None,
'efficientnet': None,
}
}
surveillance_data = {}
for person in mugshot_data.keys():
surveillance_data[person] = {'files': [], 'embeddings': []}
for file in os.listdir(SURVEILLANCE_DIR):
surveillance_data[person] = {
'files': [],
'embeddings': {
'vit': [],
'resnet': [],
'vgg': [],
'inception': [],
'mobilenet': [],
'efficientnet': [],
}
}
for file in sorted(os.listdir(SURVEILLANCE_DIR)):
person = file.split('_')[0]
file_path = os.path.join(SURVEILLANCE_DIR, file)
surveillance_data[person]['files'].append(file_path)
surveillance_data[person]['embeddings'].append(None)
surveillance_data[person]['embeddings']['vit'].append(None)
surveillance_data[person]['embeddings']['resnet'].append(None)
surveillance_data[person]['embeddings']['vgg'].append(None)
surveillance_data[person]['embeddings']['inception'].append(None)
surveillance_data[person]['embeddings']['mobilenet'].append(None)
surveillance_data[person]['embeddings']['efficientnet'].append(None)
"""
@@ -124,3 +159,34 @@ efficientnetB0_model.summary()
efficientnetB0_model.load_weights("./saved_results/Models/EfficientNet_B0/checkpoint").expect_partial() # suppresses warnings
efficientnetB0_model = tf.keras.models.Model(inputs=efficientnetB0_model.input, outputs=efficientnetB0_model.layers[-2].output)
efficientnetB0_model.summary()
"""
PREPROCESS IMAGES AND COMPUTE EMBEDDINGS
"""
try:
with open('./saved_results/Tests/SCface/embeddings.pickle', 'rb') as file:
mugshot_data, surveillance_data = pickle.load(file)
except FileNotFoundError:
for person in mugshot_data.keys():
print(f'##### Person {person} #####')
img = preprocess_image(mugshot_data[person]['file'])
embeddings_vit = vit_model(img).numpy()
embeddings1_resnet = resnet50_model(img).numpy()
embeddings1_vgg16 = vgg16_model(img).numpy()
embeddings1_inception = inception_model(img).numpy()
embeddings1_mobilenet = mobilenet_model(img).numpy()
embeddings1_efficientnet = efficientnetB0_model(img).numpy()
mugshot_data[person]['embeddings']['vit'] = embeddings_vit
mugshot_data[person]['embeddings']['resnet'] = embeddings1_resnet
mugshot_data[person]['embeddings']['vgg'] = embeddings1_vgg16
mugshot_data[person]['embeddings']['inception'] = embeddings1_inception
mugshot_data[person]['embeddings']['mobilenet'] = embeddings1_mobilenet
mugshot_data[person]['embeddings']['efficientnet'] = embeddings1_efficientnet
# for person in surveillance_data.keys():
# pass