Files
ViT-Face-Recognition/scface_test.py
2024-10-08 10:56:35 +02:00

394 lines
15 KiB
Python

import os
import pickle
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
from vit_keras import vit
from scipy.spatial.distance import cosine
from sklearn.metrics import roc_curve, auc, recall_score, precision_score, f1_score
from tqdm import tqdm
def preprocess_image(img_path):
img_ = tf.io.read_file(img_path)
img_ = tf.image.decode_jpeg(img_, channels=3)
img_ = tf.image.convert_image_dtype(img_, dtype=tf.float32)
img_ = tf.image.resize(img_, [224, 224])
img_ = tf.expand_dims(img_, axis=0)
return img_
def compute_score(embeddings1, embeddings2):
cosine_distance = cosine(embeddings1, embeddings2)
score = 1 - cosine_distance
return score
def plot_and_csv(models, ground_truth_, cameras, distances, positive_label=1):
results_dir = os.path.join('./saved_results/Tests/SCface', f"ROC-CAMERAS-{'_'.join(cameras)}-DISTANCES-{'_'.join(distances)}")
try:
os.mkdir(results_dir)
except FileExistsError:
pass
# Figure
fig, ax = plt.subplots(1, 1, figsize=(10, 9))
for model in tqdm(models.keys(), desc="Processing model"):
model_name_ = models[model]['name']
model_color_ = models[model]['color']
model_scores_ = models[model]['scores']
# Data
fpr, tpr, thresholds = roc_curve(ground_truth_, model_scores_, pos_label=positive_label)
auc_result = auc(fpr, tpr)
fnr = 1 - tpr
eer = fpr[np.argmin(np.absolute(fnr - fpr))]
eer_threshold = thresholds[np.argmin(np.absolute(fnr - fpr))]
# Find the maximum F1 score and corresponding threshold
max_f1 = 0
max_f1_recall = 0
max_f1_precision = 0
for thresh in tqdm(thresholds, desc="Processing thresholds"):
binarized_results = [1 if score >= thresh else 0 for score in model_scores_]
current_fscore = f1_score(ground_truth_, binarized_results)
if current_fscore > max_f1:
max_f1 = current_fscore
max_f1_recall = recall_score(ground_truth_, binarized_results)
max_f1_precision = precision_score(ground_truth_, binarized_results)
# Plot
ax.plot(fpr, tpr, linestyle='-', lw=3, color=model_color_, label=f'{model_name_} (EER={eer:.2f}, AUC={auc_result:.3f}, R={max_f1_recall:.3f}, P={max_f1_precision:.3f}, F={max_f1:.3f})')
ax.scatter(eer, tpr[np.argmin(np.absolute(fnr - fpr))], color=model_color_, linewidths=8, zorder=10)
# CSV
result_pd = pd.DataFrame({'FPR': fpr, 'TPR': tpr})
result_pd['EER'] = pd.DataFrame([eer, tpr[np.argmin(np.absolute(fnr - fpr))]])
result_pd.to_csv(f"{results_dir}/{model_name_}_ROC.csv", header=True, index=False)
ax.set_title('Receiver Operating Characteristics (ROC)', fontsize=15)
ax.set_xlabel('FPR', fontsize=15)
ax.set_ylabel('TPR', fontsize=15)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
ax.legend(loc='lower right', prop={"size": 11})
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05])
plt.savefig(f"{results_dir}/ROC.png", bbox_inches='tight')
ax.set_xlim([0.0, 0.3])
ax.set_ylim([0.7, 1.0])
plt.savefig(f"{results_dir}/ROC_zoom.png", bbox_inches='tight')
def compute_roc(scores_dict, cameras, distances):
vit_scores = []
resnet_scores = []
vgg_scores = []
inception_scores = []
mobilenet_scores = []
efficientnet_scores = []
ground_truth = []
for mug_person_ in scores_dict.keys():
for sur_item_, sur_values_ in scores_dict[mug_person_].items():
person_ = sur_values_['person']
cam_ = sur_values_['camera']
dist_ = sur_values_['distance']
if cam_ in cameras and dist_ in distances:
vit_scores.append(scores_dict[mug_person_][sur_item_]['vit'])
resnet_scores.append(scores_dict[mug_person_][sur_item_]['resnet'])
vgg_scores.append(scores_dict[mug_person_][sur_item_]['vgg'])
inception_scores.append(scores_dict[mug_person_][sur_item_]['inception'])
mobilenet_scores.append(scores_dict[mug_person_][sur_item_]['mobilenet'])
efficientnet_scores.append(scores_dict[mug_person_][sur_item_]['efficientnet'])
ground_truth.append(1 if person_ == mug_person_ else 0) # 1 if same person, 0 if different
models_scores = {
'vit': {'name': 'ViT_B32', 'color': 'blue', 'scores': vit_scores},
'resnet': {'name': 'ResNet_50', 'color': 'orange', 'scores': resnet_scores},
'vgg': {'name': 'VGG_16', 'color': 'green', 'scores': vgg_scores},
'inception': {'name': 'Inception_V3', 'color': 'cyan', 'scores': inception_scores},
'mobilenet': {'name': 'MobileNet_V2', 'color': 'magenta', 'scores': mobilenet_scores},
'efficientnet': {'name': 'EfficientNet_B0', 'color': 'brown', 'scores': efficientnet_scores},
}
plot_and_csv(models_scores, ground_truth, cameras, distances)
"""
CREATE DATASET
"""
BASE_DIR = '/mnt/Data/mrt/SCface_database'
MUGSHOT_DIR = f'{BASE_DIR}/mugshot_frontal_cropped_all'
SURVEILLANCE_DIR = f'{BASE_DIR}/surveillance_cameras_all'
mugshot_data = {}
for file in sorted(os.listdir(MUGSHOT_DIR)):
person = file.split('_')[0]
file_path = os.path.join(MUGSHOT_DIR, file)
mugshot_data[person] = {
'file': file_path,
'embeddings': {
'vit': None,
'resnet': None,
'vgg': None,
'inception': None,
'mobilenet': None,
'efficientnet': None,
}
}
surveillance_data = {person: {} for person in mugshot_data.keys()}
for file in sorted(os.listdir(SURVEILLANCE_DIR)):
components = file.split('.')[0].split('_')
if len(components) == 3:
person, camera, distance = components
else:
person, camera, distance = components + ['None']
file_path = os.path.join(SURVEILLANCE_DIR, file)
surveillance_data[person][file] = {
'file': file_path,
'camera': camera,
'distance': distance,
'embeddings': {
'vit': None,
'resnet': None,
'vgg': None,
'inception': None,
'mobilenet': None,
'efficientnet': None,
}
}
"""
LOAD MODELS
"""
IMAGE_SIZE = 224
NUM_CLASSES = 8631
""" ViT_B32 """
vit_model = vit.vit_b32(
image_size=IMAGE_SIZE,
pretrained=True,
include_top=False,
pretrained_top=False,
)
y = tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')(vit_model.output)
vit_model = tf.keras.models.Model(inputs=vit_model.input, outputs=y)
vit_model.load_weights("./saved_results/Models/ViT_B32/checkpoint").expect_partial() # suppresses warnings
vit_model = tf.keras.models.Model(inputs=vit_model.input, outputs=vit_model.layers[-2].output)
vit_model.summary()
""" ResNet_50 """
resnet50_model = tf.keras.applications.ResNet50(
include_top=False,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = tf.keras.layers.GlobalAvgPool2D()(resnet50_model.output)
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform())(Y)
resnet50_model = tf.keras.models.Model(inputs=resnet50_model.input, outputs=Y, name='ResNet50')
resnet50_model.load_weights("./saved_results/Models/ResNet_50/checkpoint").expect_partial() # suppresses warnings
resnet50_model = tf.keras.models.Model(inputs=resnet50_model.input, outputs=resnet50_model.layers[-2].output)
resnet50_model.summary()
""" VGG_16 """
vgg16_model = tf.keras.applications.VGG16(
include_top=True,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = vgg16_model.layers[-2].output
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform)(Y)
vgg16_model = tf.keras.models.Model(inputs=vgg16_model.input, outputs=Y, name='VGG16')
vgg16_model.load_weights("./saved_results/Models/VGG_16/checkpoint").expect_partial() # suppresses warnings
vgg16_model = tf.keras.models.Model(inputs=vgg16_model.input, outputs=vgg16_model.layers[-2].output)
vgg16_model.summary()
""" Inception_v3 """
inception_model = tf.keras.applications.InceptionV3(
include_top=False,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = tf.keras.layers.GlobalAvgPool2D()(inception_model.output)
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform())(Y)
inception_model = tf.keras.models.Model(inputs=inception_model.input, outputs=Y, name='InceptionV3')
inception_model.summary()
inception_model.load_weights("./saved_results/Models/Inception_V3/checkpoint").expect_partial() # suppresses warnings
inception_model = tf.keras.models.Model(inputs=inception_model.input, outputs=inception_model.layers[-2].output)
inception_model.summary()
""" MobileNet_v2 """
mobilenet_model = tf.keras.applications.MobileNetV2(
include_top=False,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = tf.keras.layers.GlobalAvgPool2D()(mobilenet_model.output)
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform())(Y)
mobilenet_model = tf.keras.models.Model(inputs=mobilenet_model.input, outputs=Y, name='MobileNetV2')
mobilenet_model.summary()
mobilenet_model.load_weights("./saved_results/Models/MobileNet_V2/checkpoint").expect_partial() # suppresses warnings
mobilenet_model = tf.keras.models.Model(inputs=mobilenet_model.input, outputs=mobilenet_model.layers[-2].output)
mobilenet_model.summary()
""" EfficientNet_B0 """
efficientnetB0_model = tf.keras.applications.EfficientNetB0(
include_top=False,
weights="imagenet",
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
pooling=None,
)
Y = tf.keras.layers.GlobalAvgPool2D()(efficientnetB0_model.output)
Y = tf.keras.layers.Dense(units=NUM_CLASSES, activation='softmax', kernel_initializer=tf.keras.initializers.GlorotUniform())(Y)
efficientnetB0_model = tf.keras.models.Model(inputs=efficientnetB0_model.input, outputs=Y, name='EfficientNetB0')
efficientnetB0_model.summary()
efficientnetB0_model.load_weights("./saved_results/Models/EfficientNet_B0/checkpoint").expect_partial() # suppresses warnings
efficientnetB0_model = tf.keras.models.Model(inputs=efficientnetB0_model.input, outputs=efficientnetB0_model.layers[-2].output)
efficientnetB0_model.summary()
"""
PREPROCESS IMAGES AND COMPUTE EMBEDDINGS
"""
try:
with open('./saved_results/Tests/SCface/embeddings.pickle', 'rb') as file:
mugshot_data, surveillance_data = pickle.load(file)
except FileNotFoundError:
for person in mugshot_data.keys():
img = preprocess_image(mugshot_data[person]['file'])
embeddings_vit = vit_model(img).numpy()
embeddings_resnet = resnet50_model(img).numpy()
embeddings_vgg16 = vgg16_model(img).numpy()
embeddings_inception = inception_model(img).numpy()
embeddings_mobilenet = mobilenet_model(img).numpy()
embeddings_efficientnet = efficientnetB0_model(img).numpy()
mugshot_data[person]['embeddings']['vit'] = embeddings_vit
mugshot_data[person]['embeddings']['resnet'] = embeddings_resnet
mugshot_data[person]['embeddings']['vgg'] = embeddings_vgg16
mugshot_data[person]['embeddings']['inception'] = embeddings_inception
mugshot_data[person]['embeddings']['mobilenet'] = embeddings_mobilenet
mugshot_data[person]['embeddings']['efficientnet'] = embeddings_efficientnet
for person in surveillance_data.keys():
for file in surveillance_data[person].keys():
img = preprocess_image(surveillance_data[person][file]['file'])
embeddings_vit = vit_model(img).numpy()
embeddings_resnet = resnet50_model(img).numpy()
embeddings_vgg16 = vgg16_model(img).numpy()
embeddings_inception = inception_model(img).numpy()
embeddings_mobilenet = mobilenet_model(img).numpy()
embeddings_efficientnet = efficientnetB0_model(img).numpy()
surveillance_data[person][file]['embeddings']['vit'] = embeddings_vit
surveillance_data[person][file]['embeddings']['resnet'] = embeddings_resnet
surveillance_data[person][file]['embeddings']['vgg'] = embeddings_vgg16
surveillance_data[person][file]['embeddings']['inception'] = embeddings_inception
surveillance_data[person][file]['embeddings']['mobilenet'] = embeddings_mobilenet
surveillance_data[person][file]['embeddings']['efficientnet'] = embeddings_efficientnet
with open('./saved_results/Tests/SCface/embeddings.pickle', 'wb') as file:
data = (mugshot_data, surveillance_data)
pickle.dump(data, file)
"""
MATCH MUGSHOT AND SURVEILLANCE IMAGES TO OBTAIN MATCHING SCORES
"""
try:
with open('./saved_results/Tests/SCface/scores.pickle', 'rb') as scores_file:
scores = pickle.load(scores_file)
except FileNotFoundError:
scores = {person: {} for person in mugshot_data.keys()}
for mug_person in mugshot_data.keys():
for sur_person in surveillance_data.keys():
for file in surveillance_data[sur_person].keys():
scores[mug_person][file.split('.jpg')[0]] = {
'person': file.split('_')[0],
'camera': surveillance_data[sur_person][file]['camera'],
'distance': surveillance_data[sur_person][file]['distance'],
'vit': compute_score(
mugshot_data[mug_person]['embeddings']['vit'],
surveillance_data[sur_person][file]['embeddings']['vit']
),
'resnet': compute_score(
mugshot_data[mug_person]['embeddings']['resnet'],
surveillance_data[sur_person][file]['embeddings']['resnet']
),
'vgg': compute_score(
mugshot_data[mug_person]['embeddings']['vgg'],
surveillance_data[sur_person][file]['embeddings']['vgg']
),
'inception': compute_score(
mugshot_data[mug_person]['embeddings']['inception'],
surveillance_data[sur_person][file]['embeddings']['inception']
),
'mobilenet': compute_score(
mugshot_data[mug_person]['embeddings']['mobilenet'],
surveillance_data[sur_person][file]['embeddings']['mobilenet']
),
'efficientnet': compute_score(
mugshot_data[mug_person]['embeddings']['efficientnet'],
surveillance_data[sur_person][file]['embeddings']['efficientnet']
),
}
with open('./saved_results/Tests/SCface/scores.pickle', 'wb') as scores_file:
pickle.dump(scores, scores_file)
"""
COMPUTE ROC CURVES
"""
compute_roc(
scores,
cameras=[
'cam1',
'cam2',
'cam3',
'cam4',
'cam5',
# 'cam6',
# 'cam7',
# 'cam8',
],
distances=[
'1',
'2',
'3',
# 'None',
]
)