Files

182 lines
6.3 KiB
Python
Raw Permalink Normal View History

2021-10-15 11:30:29 +08:00
import logging
import os
import time
from typing import List
import oneflow as flow
from eval import verification
from utils.utils_logging import AverageMeter
class CallBackVerification(object):
2021-11-04 19:35:06 +08:00
def __init__(
self,
frequent,
rank,
val_targets,
rec_prefix,
image_size=(112, 112),
world_size=1,
is_consistent=False,
):
2021-10-15 11:30:29 +08:00
self.frequent: int = frequent
2021-11-04 19:35:06 +08:00
self.rank: int = rank
2021-10-15 11:30:29 +08:00
self.highest_acc: float = 0.0
self.highest_acc_list: List[float] = [0.0] * len(val_targets)
self.ver_list: List[object] = []
self.ver_name_list: List[str] = []
2021-11-04 19:35:06 +08:00
self.world_size = world_size
self.is_consistent = is_consistent
if self.is_consistent:
self.init_dataset(
val_targets=val_targets, data_dir=rec_prefix, image_size=image_size
)
else:
if self.rank is 0:
self.init_dataset(
val_targets=val_targets, data_dir=rec_prefix, image_size=image_size
)
2021-10-15 11:30:29 +08:00
def ver_test(self, backbone: flow.nn.Module, global_step: int):
results = []
for i in range(len(self.ver_list)):
2021-11-04 19:35:06 +08:00
2021-10-15 11:30:29 +08:00
acc1, std1, acc2, std2, xnorm, embeddings_list = verification.test(
2021-11-04 19:35:06 +08:00
self.ver_list[i], backbone, 10, 10, self.is_consistent
)
logging.info(
2021-11-06 19:46:22 +08:00
"[%s][%d]XNorm: %f" % (
self.ver_name_list[i], global_step, xnorm)
2021-11-04 19:35:06 +08:00
)
logging.info(
"[%s][%d]Accuracy-Flip: %1.5f+-%1.5f"
% (self.ver_name_list[i], global_step, acc2, std2)
)
2021-10-15 11:30:29 +08:00
if acc2 > self.highest_acc_list[i]:
self.highest_acc_list[i] = acc2
logging.info(
2021-11-04 19:35:06 +08:00
"[%s][%d]Accuracy-Highest: %1.5f"
% (self.ver_name_list[i], global_step, self.highest_acc_list[i])
)
2021-10-15 11:30:29 +08:00
results.append(acc2)
def init_dataset(self, val_targets, data_dir, image_size):
for name in val_targets:
2021-11-06 19:46:22 +08:00
path = os.path.join(data_dir, "val", name + ".bin")
2021-10-15 11:30:29 +08:00
if os.path.exists(path):
data_set = verification.load_bin_cv(path, image_size)
self.ver_list.append(data_set)
self.ver_name_list.append(name)
2021-11-06 19:46:22 +08:00
if len(self.ver_list) == 0:
logging.info("Val targets is None !")
2021-10-15 11:30:29 +08:00
2021-11-04 19:35:06 +08:00
def __call__(self, num_update, backbone: flow.nn.Module, backbone_graph=None):
2021-10-15 11:30:29 +08:00
2021-11-04 19:35:06 +08:00
if self.is_consistent:
if num_update > 0 and num_update % self.frequent == 0:
backbone.eval()
self.ver_test(backbone_graph, num_update)
backbone.train()
else:
if self.rank is 0 and num_update > 0 and num_update % self.frequent == 0:
backbone.eval()
self.ver_test(backbone, num_update)
backbone.train()
2021-10-15 11:30:29 +08:00
class CallBackLogging(object):
2021-11-04 19:35:06 +08:00
def __init__(self, frequent, rank, total_step, batch_size, world_size, writer=None):
2021-10-15 11:30:29 +08:00
self.frequent: int = frequent
2021-11-04 19:35:06 +08:00
self.rank: int = rank
2021-10-15 11:30:29 +08:00
self.time_start = time.time()
self.total_step: int = total_step
self.batch_size: int = batch_size
self.world_size: int = world_size
self.writer = writer
self.init = False
self.tic = 0
2021-11-04 19:35:06 +08:00
def __call__(
self,
global_step: int,
loss: AverageMeter,
epoch: int,
fp16: bool,
learning_rate: float,
grad_scaler=None,
):
if self.rank == 0 and global_step % self.frequent == 0:
if self.init:
try:
speed: float = self.frequent * self.batch_size / (
time.time() - self.tic
)
speed_total = speed * self.world_size
except ZeroDivisionError:
speed_total = float("inf")
time_now = (time.time() - self.time_start) / 3600
time_total = time_now / ((global_step + 1) / self.total_step)
time_for_end = time_total - time_now
if self.writer is not None:
2021-11-06 19:46:22 +08:00
self.writer.add_scalar(
"time_for_end", time_for_end, global_step)
self.writer.add_scalar(
"learning_rate", learning_rate, global_step)
2021-11-04 19:35:06 +08:00
self.writer.add_scalar("loss", loss.avg, global_step)
if fp16:
msg = (
"Speed %.2f samples/sec Loss %.4f LearningRate %.4f Epoch: %d Global Step: %d "
"Fp16 Grad Scale: %2.f Required: %1.f hours"
% (
speed_total,
loss.avg,
learning_rate,
epoch,
global_step,
time_for_end,
)
)
else:
msg = (
"Speed %.2f samples/sec Loss %.4f LearningRate %.4f Epoch: %d Global Step: %d "
"Required: %1.f hours"
% (
speed_total,
loss.avg,
learning_rate,
epoch,
global_step,
time_for_end,
)
)
logging.info(msg)
loss.reset()
self.tic = time.time()
else:
self.init = True
self.tic = time.time()
class CallBackModelCheckpoint(object):
def __init__(self, rank, output="./"):
self.rank: int = rank
self.output: str = output
def __call__(self, global_step, epoch, backbone, is_consistent=False):
if global_step > 100 and backbone is not None:
path_module = os.path.join(self.output, "epoch_%d" % (epoch))
if is_consistent:
2021-11-06 19:46:22 +08:00
flow.save(backbone.state_dict(),
path_module, consistent_dst_rank=0)
2021-11-04 19:35:06 +08:00
else:
if self.rank == 0:
flow.save(backbone.state_dict(), path_module)
logging.info("oneflow Model Saved in '{}'".format(path_module))