2020-08-10 17:09:02 +08:00
2020-08-10 12:33:51 +01:00
## Subcenter ArcFace
2020-08-10 17:32:17 +08:00
2020-08-10 13:09:42 +01:00
### 1. Motivation
2020-08-10 17:32:17 +08:00
2020-08-10 13:09:42 +01:00
We introduce one extra hyperparameter (subcenter number `loss_K` ) to ArcFace to relax the intra-class compactness constraint. In our experiments, we find ``loss_K=3` ` can achieve a good balance between accuracy and robustness.
2020-08-10 17:32:17 +08:00
2021-06-19 23:37:10 +08:00

2020-08-10 12:46:14 +01:00
2020-08-10 13:09:42 +01:00
### 2. Implementation
The training process of Subcenter ArcFace is almost same as [ArcFace ](https://github.com/deepinsight/insightface/tree/master/recognition/ArcFace )
The increased GPU memory consumption can be easily alleviated by our parallel framework.
2021-06-19 23:37:10 +08:00

2020-08-10 12:46:14 +01:00
2020-08-10 13:09:42 +01:00
### 3. Training Dataset
2020-08-10 17:32:17 +08:00
2020-09-18 10:34:51 +01:00
1. MS1MV0 (The noise rate is around 50%), download link ([baidu drive ](https://pan.baidu.com/s/1bSamN5CLiSrxOuGi-Lx7tw ), code ``8ql0` `) ([dropbox ](https://www.dropbox.com/sh/y2mj25uj440f7bl/AABc7pCJvUvxEcmXs8WYi9Zaa?dl=0 ))
2020-08-10 17:32:17 +08:00
2020-08-10 13:09:42 +01:00
### 4. Training Steps
2020-08-10 17:32:17 +08:00
2020-08-10 12:33:51 +01:00
1). Train Sub-center ArcFace (``loss_K=3` `) on MS1MV0.
2020-08-10 17:32:17 +08:00
2020-08-10 12:33:51 +01:00
2). Drop non-dominant subcenters and high-confident noisy data (``>75 degrees` `).
2020-08-10 17:32:17 +08:00
``
python drop.py --data <ms1mv0-path> --model <step-1-pretrained-model> --threshold 75 --k 3 --output <ms1mv0-drop75-path>
``
2020-08-10 17:33:08 +08:00
3). Train ArcFace on the new ``MS1MV0-Drop75` ` dataset.
2020-08-11 12:49:07 +01:00
### 5. Pretrained Models and Logs
2021-08-05 10:35:03 +08:00
[baidu drive ](https://pan.baidu.com/s/1yikOW1Xzm1XIHu0uv0RdRw ) code ``3jsh` `. [gdrive ](https://drive.google.com/file/d/1h8Ybz6mJ7n2IfLbDv2HUU37OdVHn7YPg/view?usp=sharing )
2020-08-10 17:32:17 +08:00
### Citation
2020-08-10 12:33:51 +01:00
If you find * Sub-center ArcFace * useful in your research, please consider to cite the following related papers:
```
@inproceedings {deng2020subcenter,
title={Sub-center ArcFace: Boosting Face Recognition by Large-scale Noisy Web Faces},
author={Deng, Jiankang and Guo, Jia and Liu, Tongliang and Gong, Mingming and Zafeiriou, Stefanos},
booktitle={Proceedings of the IEEE Conference on European Conference on Computer Vision},
year={2020}
}
```
2020-08-10 17:32:17 +08:00