2024-07-17 08:53:50 +08:00
|
|
|
import time
|
|
|
|
|
|
2024-05-02 01:27:29 +08:00
|
|
|
import click
|
|
|
|
|
import cv2
|
|
|
|
|
import inspireface as ifac
|
|
|
|
|
from inspireface.param import *
|
2024-07-05 21:54:55 +08:00
|
|
|
import numpy as np
|
2024-05-02 01:27:29 +08:00
|
|
|
|
2024-07-17 08:53:50 +08:00
|
|
|
|
|
|
|
|
def generate_color(id):
|
|
|
|
|
"""
|
|
|
|
|
Generate a bright color based on the given integer ID. Ensures 50 unique colors.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
id (int): The ID for which to generate a color.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
tuple: A tuple representing the color in BGR format.
|
|
|
|
|
"""
|
|
|
|
|
max_id = 50 # Number of unique colors
|
|
|
|
|
id = id % max_id
|
|
|
|
|
|
|
|
|
|
# Generate HSV color
|
|
|
|
|
hue = int((id * 360 / max_id) % 360) # Distribute hue values equally
|
|
|
|
|
saturation = 200 + (55 * id) % 55 # High saturation for bright colors
|
|
|
|
|
value = 200 + (55 * id) % 55 # High value for bright colors
|
|
|
|
|
|
|
|
|
|
hsv_color = np.uint8([[[hue, saturation, value]]])
|
|
|
|
|
rgb_color = cv2.cvtColor(hsv_color, cv2.COLOR_HSV2BGR)[0][0]
|
|
|
|
|
|
|
|
|
|
return (int(rgb_color[0]), int(rgb_color[1]), int(rgb_color[2]))
|
|
|
|
|
|
2024-05-02 01:27:29 +08:00
|
|
|
@click.command()
|
|
|
|
|
@click.argument("resource_path")
|
|
|
|
|
@click.argument('source')
|
|
|
|
|
@click.option('--show', is_flag=True, help='Display the video stream or video file in a window.')
|
2024-07-17 08:53:50 +08:00
|
|
|
@click.option('--out', type=str, default=None, help='Path to save the processed video.')
|
|
|
|
|
def case_face_tracker_from_video(resource_path, source, show, out):
|
2024-05-02 01:27:29 +08:00
|
|
|
"""
|
|
|
|
|
Launch a face tracking process from a video source. The 'source' can either be a webcam index (0, 1, ...)
|
|
|
|
|
or a path to a video file. Use the --show option to display the video.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
resource_path (str): Path to the resource directory for face tracking algorithms.
|
|
|
|
|
source (str): Webcam index or path to the video file.
|
|
|
|
|
show (bool): If set, the video will be displayed in a window.
|
2024-07-17 08:53:50 +08:00
|
|
|
out (str): Path to save the processed video.
|
2024-05-02 01:27:29 +08:00
|
|
|
"""
|
|
|
|
|
# Initialize the face tracker or other resources.
|
|
|
|
|
print(f"Initializing with resources from: {resource_path}")
|
|
|
|
|
# Step 1: Initialize the SDK and load the algorithm resource files.
|
|
|
|
|
ret = ifac.launch(resource_path)
|
|
|
|
|
assert ret, "Launch failure. Please ensure the resource path is correct."
|
|
|
|
|
|
|
|
|
|
# Optional features, loaded during session creation based on the modules specified.
|
2024-07-17 08:53:50 +08:00
|
|
|
opt = HF_ENABLE_NONE | HF_ENABLE_INTERACTION
|
|
|
|
|
session = ifac.InspireFaceSession(opt, HF_DETECT_MODE_ALWAYS_DETECT, max_detect_num=25, detect_pixel_level=320) # Use video mode
|
|
|
|
|
session.set_filter_minimum_face_pixel_size(0)
|
2024-05-02 01:27:29 +08:00
|
|
|
# Determine if the source is a digital webcam index or a video file path.
|
|
|
|
|
try:
|
|
|
|
|
source_index = int(source) # Try to convert source to an integer.
|
|
|
|
|
cap = cv2.VideoCapture(source_index)
|
|
|
|
|
print(f"Using webcam at index {source_index}.")
|
|
|
|
|
except ValueError:
|
|
|
|
|
# If conversion fails, treat source as a file path.
|
|
|
|
|
cap = cv2.VideoCapture(source)
|
|
|
|
|
print(f"Opening video file at {source}.")
|
|
|
|
|
|
|
|
|
|
if not cap.isOpened():
|
|
|
|
|
print("Error: Could not open video source.")
|
|
|
|
|
return
|
|
|
|
|
|
2024-07-17 08:53:50 +08:00
|
|
|
# VideoWriter to save the processed video if out is provided.
|
|
|
|
|
if out:
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 30
|
|
|
|
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
|
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
|
out_video = cv2.VideoWriter(out, fourcc, fps, (frame_width, frame_height))
|
|
|
|
|
print(f"Saving video to: {out}")
|
|
|
|
|
|
2024-05-02 01:27:29 +08:00
|
|
|
# Main loop to process video frames.
|
|
|
|
|
while True:
|
|
|
|
|
ret, frame = cap.read()
|
|
|
|
|
if not ret:
|
|
|
|
|
break # Exit loop if no more frames or error occurs.
|
|
|
|
|
|
|
|
|
|
# Process frame here (e.g., face detection/tracking).
|
|
|
|
|
faces = session.face_detection(frame)
|
2024-07-05 21:54:55 +08:00
|
|
|
|
2024-07-17 08:53:50 +08:00
|
|
|
exts = session.face_pipeline(frame, faces, HF_ENABLE_INTERACTION)
|
|
|
|
|
print(exts)
|
|
|
|
|
|
|
|
|
|
for idx, face in enumerate(faces):
|
2024-07-05 21:54:55 +08:00
|
|
|
# Get face bounding box
|
2024-05-02 01:27:29 +08:00
|
|
|
x1, y1, x2, y2 = face.location
|
2024-07-05 21:54:55 +08:00
|
|
|
|
|
|
|
|
# Calculate center, size, and angle
|
|
|
|
|
center = ((x1 + x2) / 2, (y1 + y2) / 2)
|
|
|
|
|
size = (x2 - x1, y2 - y1)
|
2024-07-17 08:53:50 +08:00
|
|
|
angle = face.roll
|
2024-07-05 21:54:55 +08:00
|
|
|
|
|
|
|
|
# Apply rotation to the bounding box corners
|
|
|
|
|
rect = ((center[0], center[1]), (size[0], size[1]), angle)
|
|
|
|
|
box = cv2.boxPoints(rect)
|
|
|
|
|
box = box.astype(int)
|
|
|
|
|
|
2024-07-17 08:53:50 +08:00
|
|
|
color = generate_color(face.track_id)
|
|
|
|
|
|
2024-07-05 21:54:55 +08:00
|
|
|
# Draw the rotated bounding box
|
2024-07-17 08:53:50 +08:00
|
|
|
cv2.drawContours(frame, [box], 0, color, 4)
|
2024-07-05 21:54:55 +08:00
|
|
|
|
|
|
|
|
# Draw landmarks
|
|
|
|
|
lmk = session.get_face_dense_landmark(face)
|
|
|
|
|
for x, y in lmk.astype(int):
|
2024-07-17 08:53:50 +08:00
|
|
|
cv2.circle(frame, (x, y), 0, color, 4)
|
|
|
|
|
|
|
|
|
|
# Draw track ID at the top of the bounding box
|
|
|
|
|
text = f"ID: {face.track_id}"
|
|
|
|
|
text_size, _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
|
|
|
|
text_x = min(box[:, 0])
|
|
|
|
|
text_y = min(box[:, 1]) - 10
|
|
|
|
|
if text_y < 0:
|
|
|
|
|
text_y = min(box[:, 1]) + text_size[1] + 10
|
|
|
|
|
cv2.putText(frame, text, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
2024-05-02 01:27:29 +08:00
|
|
|
|
|
|
|
|
if show:
|
|
|
|
|
cv2.imshow("Face Tracker", frame)
|
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
|
|
|
break # Exit loop if 'q' is pressed.
|
|
|
|
|
|
2024-07-17 08:53:50 +08:00
|
|
|
if out:
|
|
|
|
|
out_video.write(frame)
|
|
|
|
|
|
2024-05-02 01:27:29 +08:00
|
|
|
# Cleanup: release video capture and close any open windows.
|
|
|
|
|
cap.release()
|
2024-07-17 08:53:50 +08:00
|
|
|
if out:
|
|
|
|
|
out_video.release()
|
2024-05-02 01:27:29 +08:00
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
print("Released all resources and closed windows.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
case_face_tracker_from_video()
|