Files
insightface/cpp-package/inspireface/python/sample_face_track_from_video.py

145 lines
5.3 KiB
Python
Raw Normal View History

2024-07-17 08:53:50 +08:00
import time
import click
import cv2
import inspireface as ifac
from inspireface.param import *
2024-07-05 21:54:55 +08:00
import numpy as np
2024-07-17 08:53:50 +08:00
def generate_color(id):
"""
Generate a bright color based on the given integer ID. Ensures 50 unique colors.
Args:
id (int): The ID for which to generate a color.
Returns:
tuple: A tuple representing the color in BGR format.
"""
max_id = 50 # Number of unique colors
id = id % max_id
# Generate HSV color
hue = int((id * 360 / max_id) % 360) # Distribute hue values equally
saturation = 200 + (55 * id) % 55 # High saturation for bright colors
value = 200 + (55 * id) % 55 # High value for bright colors
hsv_color = np.uint8([[[hue, saturation, value]]])
rgb_color = cv2.cvtColor(hsv_color, cv2.COLOR_HSV2BGR)[0][0]
return (int(rgb_color[0]), int(rgb_color[1]), int(rgb_color[2]))
@click.command()
@click.argument("resource_path")
@click.argument('source')
@click.option('--show', is_flag=True, help='Display the video stream or video file in a window.')
2024-07-17 08:53:50 +08:00
@click.option('--out', type=str, default=None, help='Path to save the processed video.')
def case_face_tracker_from_video(resource_path, source, show, out):
"""
Launch a face tracking process from a video source. The 'source' can either be a webcam index (0, 1, ...)
or a path to a video file. Use the --show option to display the video.
Args:
resource_path (str): Path to the resource directory for face tracking algorithms.
source (str): Webcam index or path to the video file.
show (bool): If set, the video will be displayed in a window.
2024-07-17 08:53:50 +08:00
out (str): Path to save the processed video.
"""
# Initialize the face tracker or other resources.
print(f"Initializing with resources from: {resource_path}")
# Step 1: Initialize the SDK and load the algorithm resource files.
ret = ifac.launch(resource_path)
assert ret, "Launch failure. Please ensure the resource path is correct."
# Optional features, loaded during session creation based on the modules specified.
2024-07-17 08:53:50 +08:00
opt = HF_ENABLE_NONE | HF_ENABLE_INTERACTION
session = ifac.InspireFaceSession(opt, HF_DETECT_MODE_ALWAYS_DETECT, max_detect_num=25, detect_pixel_level=320) # Use video mode
session.set_filter_minimum_face_pixel_size(0)
# Determine if the source is a digital webcam index or a video file path.
try:
source_index = int(source) # Try to convert source to an integer.
cap = cv2.VideoCapture(source_index)
print(f"Using webcam at index {source_index}.")
except ValueError:
# If conversion fails, treat source as a file path.
cap = cv2.VideoCapture(source)
print(f"Opening video file at {source}.")
if not cap.isOpened():
print("Error: Could not open video source.")
return
2024-07-17 08:53:50 +08:00
# VideoWriter to save the processed video if out is provided.
if out:
fourcc = cv2.VideoWriter_fourcc(*'XVID')
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 30
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out_video = cv2.VideoWriter(out, fourcc, fps, (frame_width, frame_height))
print(f"Saving video to: {out}")
# Main loop to process video frames.
while True:
ret, frame = cap.read()
if not ret:
break # Exit loop if no more frames or error occurs.
# Process frame here (e.g., face detection/tracking).
faces = session.face_detection(frame)
2024-07-05 21:54:55 +08:00
2024-07-17 08:53:50 +08:00
exts = session.face_pipeline(frame, faces, HF_ENABLE_INTERACTION)
print(exts)
for idx, face in enumerate(faces):
2024-07-05 21:54:55 +08:00
# Get face bounding box
x1, y1, x2, y2 = face.location
2024-07-05 21:54:55 +08:00
# Calculate center, size, and angle
center = ((x1 + x2) / 2, (y1 + y2) / 2)
size = (x2 - x1, y2 - y1)
2024-07-17 08:53:50 +08:00
angle = face.roll
2024-07-05 21:54:55 +08:00
# Apply rotation to the bounding box corners
rect = ((center[0], center[1]), (size[0], size[1]), angle)
box = cv2.boxPoints(rect)
box = box.astype(int)
2024-07-17 08:53:50 +08:00
color = generate_color(face.track_id)
2024-07-05 21:54:55 +08:00
# Draw the rotated bounding box
2024-07-17 08:53:50 +08:00
cv2.drawContours(frame, [box], 0, color, 4)
2024-07-05 21:54:55 +08:00
# Draw landmarks
lmk = session.get_face_dense_landmark(face)
for x, y in lmk.astype(int):
2024-07-17 08:53:50 +08:00
cv2.circle(frame, (x, y), 0, color, 4)
# Draw track ID at the top of the bounding box
text = f"ID: {face.track_id}"
text_size, _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
text_x = min(box[:, 0])
text_y = min(box[:, 1]) - 10
if text_y < 0:
text_y = min(box[:, 1]) + text_size[1] + 10
cv2.putText(frame, text, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
if show:
cv2.imshow("Face Tracker", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break # Exit loop if 'q' is pressed.
2024-07-17 08:53:50 +08:00
if out:
out_video.write(frame)
# Cleanup: release video capture and close any open windows.
cap.release()
2024-07-17 08:53:50 +08:00
if out:
out_video.release()
cv2.destroyAllWindows()
print("Released all resources and closed windows.")
if __name__ == '__main__':
case_face_tracker_from_video()