Merge pull request #2657 from tunmx/dev/inspireface117

Update InspireFace to 1.1.7
This commit is contained in:
Jia Guo
2024-09-30 11:00:08 +08:00
committed by GitHub
7 changed files with 236 additions and 103 deletions

View File

@@ -10,7 +10,7 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
# Current version
set(INSPIRE_FACE_VERSION_MAJOR 1)
set(INSPIRE_FACE_VERSION_MINOR 1)
set(INSPIRE_FACE_VERSION_PATCH 6)
set(INSPIRE_FACE_VERSION_PATCH 7)
# Converts the version number to a string
string(CONCAT INSPIRE_FACE_VERSION_MAJOR_STR ${INSPIRE_FACE_VERSION_MAJOR})

View File

@@ -13,6 +13,8 @@ Please contact [contact@insightface.ai](mailto:contact@insightface.ai?subject=In
## Change Logs
**`2024-09-30`** Fixed some bugs in the feature hub.
**`2024-08-18`** Updating [Benchmark](doc/Benchmark-Remark(Updating).md): Using CoreML with Apple's Neural Engine (ANE) on the iPhone 13, the combined processes of **Face Detection** + **Alignment** + **Feature Extraction** take less than **2ms**.
**`2024-07-17`** Add global resource statistics monitoring to prevent memory leaks.

View File

@@ -242,7 +242,7 @@ HYPER_CAPI_EXPORT extern HResult HFSessionSetTrackPreviewSize(HFSession session,
* this number will be filtered.
*
* @param session Handle to the session.
* @param minSize The minimum pixel value, default value is 24.
* @param minSize The minimum pixel value, default value is 0.
* @return HResult indicating the success or failure of the operation.
*/
HYPER_CAPI_EXPORT extern HResult HFSessionSetFilterMinimumFacePixelSize(HFSession session,

View File

@@ -176,7 +176,7 @@ private:
double det_use_time_; ///< Time used for detection.
double track_total_use_time_; ///< Total time used for tracking.
int track_preview_size_; ///< Size of the tracking preview.
int filter_minimum_face_px_size = 24; ///< Minimum face pixel allowed to be retained (take the edge with the smallest Rect).
int filter_minimum_face_px_size = 0; ///< Minimum face pixel allowed to be retained (take the edge with the smallest Rect).
private:

View File

@@ -37,9 +37,11 @@ int main(int argc, char* argv[]) {
return ret;
}
// Enable the functions in the pipeline: mask detection, live detection, and face quality detection
// Enable the functions in the pipeline: mask detection, live detection, and face quality
// detection
HOption option = HF_ENABLE_QUALITY | HF_ENABLE_MASK_DETECT | HF_ENABLE_LIVENESS;
// Non-video or frame sequence mode uses IMAGE-MODE, which is always face detection without tracking
// Non-video or frame sequence mode uses IMAGE-MODE, which is always face detection without
// tracking
HFDetectMode detMode = HF_DETECT_MODE_ALWAYS_DETECT;
// Maximum number of faces detected
HInt32 maxDetectNum = 20;
@@ -47,7 +49,8 @@ int main(int argc, char* argv[]) {
HInt32 detectPixelLevel = 160;
// Handle of the current face SDK algorithm context
HFSession session = {0};
ret = HFCreateInspireFaceSessionOptional(option, detMode, maxDetectNum, detectPixelLevel, -1, &session);
ret = HFCreateInspireFaceSessionOptional(option, detMode, maxDetectNum, detectPixelLevel, -1,
&session);
if (ret != HSUCCEED) {
std::cout << "Create FaceContext error: " << ret << std::endl;
return ret;
@@ -55,7 +58,7 @@ int main(int argc, char* argv[]) {
HFSessionSetTrackPreviewSize(session, detectPixelLevel);
HFSessionSetFilterMinimumFacePixelSize(session, 32);
// Load a image
cv::Mat image = cv::imread(sourcePath);
if (image.empty()) {
@@ -64,9 +67,9 @@ int main(int argc, char* argv[]) {
}
// Prepare an image parameter structure for configuration
HFImageData imageParam = {0};
imageParam.data = image.data; // Data buffer
imageParam.width = image.cols; // Target view width
imageParam.height = image.rows; // Target view width
imageParam.data = image.data; // Data buffer
imageParam.width = image.cols; // Target view width
imageParam.height = image.rows; // Target view width
// Set rotation based on input parameter
switch (rotation) {
@@ -113,22 +116,25 @@ int main(int argc, char* argv[]) {
std::cout << "Token size: " << multipleFaceData.tokens[index].size << std::endl;
std::cout << "Process face index: " << index << std::endl;
// Use OpenCV's Rect to receive face bounding boxes
auto rect = cv::Rect(multipleFaceData.rects[index].x, multipleFaceData.rects[index].y,
multipleFaceData.rects[index].width, multipleFaceData.rects[index].height);
auto rect =
cv::Rect(multipleFaceData.rects[index].x, multipleFaceData.rects[index].y,
multipleFaceData.rects[index].width, multipleFaceData.rects[index].height);
cv::rectangle(draw, rect, cv::Scalar(0, 100, 255), 4);
// Print FaceID, In IMAGE-MODE it is changing, in VIDEO-MODE it is fixed, but it may be lost
std::cout << "FaceID: " << multipleFaceData.trackIds[index] << std::endl;
// Print Head euler angle, It can often be used to judge the quality of a face by the Angle of the head
// Print Head euler angle, It can often be used to judge the quality of a face by the Angle
// of the head
std::cout << "Roll: " << multipleFaceData.angles.roll[index]
<< ", Yaw: " << multipleFaceData.angles.roll[index]
<< ", Yaw: " << multipleFaceData.angles.yaw[index]
<< ", Pitch: " << multipleFaceData.angles.pitch[index] << std::endl;
HInt32 numOfLmk;
HFGetNumOfFaceDenseLandmark(&numOfLmk);
HPoint2f denseLandmarkPoints[numOfLmk];
ret = HFGetFaceDenseLandmarkFromFaceToken(multipleFaceData.tokens[index], denseLandmarkPoints, numOfLmk);
ret = HFGetFaceDenseLandmarkFromFaceToken(multipleFaceData.tokens[index],
denseLandmarkPoints, numOfLmk);
if (ret != HSUCCEED) {
std::cerr << "HFGetFaceDenseLandmarkFromFaceToken error!!" << std::endl;
return -1;
@@ -137,14 +143,19 @@ int main(int argc, char* argv[]) {
cv::Point2f p(denseLandmarkPoints[i].x, denseLandmarkPoints[i].y);
cv::circle(draw, p, 0, (0, 0, 255), 2);
}
auto& rt = multipleFaceData.rects[index];
float area = ((float)(rt.height * rt.width)) / (imageParam.width * imageParam.height);
std::cout << "area: " << area << std::endl;
}
cv::imwrite("draw_detected.jpg", draw);
// Run pipeline function
// Select the pipeline function that you want to execute, provided that it is already enabled when FaceContext is created!
// Select the pipeline function that you want to execute, provided that it is already enabled
// when FaceContext is created!
auto pipelineOption = HF_ENABLE_QUALITY | HF_ENABLE_MASK_DETECT | HF_ENABLE_LIVENESS;
// In this loop, all faces are processed
ret = HFMultipleFacePipelineProcessOptional(session, imageHandle, &multipleFaceData, pipelineOption);
ret = HFMultipleFacePipelineProcessOptional(session, imageHandle, &multipleFaceData,
pipelineOption);
if (ret != HSUCCEED) {
std::cout << "Execute Pipeline error: " << ret << std::endl;
return ret;
@@ -171,14 +182,13 @@ int main(int argc, char* argv[]) {
std::cout << "Process face index from pipeline: " << index << std::endl;
std::cout << "Mask detect result: " << maskConfidence.confidence[index] << std::endl;
std::cout << "Quality predict result: " << qualityConfidence.confidence[index] << std::endl;
// We set the threshold of wearing a mask as 0.85. If it exceeds the threshold, it will be judged as wearing a mask.
// The threshold can be adjusted according to the scene
// We set the threshold of wearing a mask as 0.85. If it exceeds the threshold, it will be
// judged as wearing a mask. The threshold can be adjusted according to the scene
if (maskConfidence.confidence[index] > 0.85) {
std::cout << "Mask" << std::endl;
} else {
std::cout << "Non Mask" << std::endl;
}
}
ret = HFReleaseImageStream(imageHandle);

View File

@@ -32,7 +32,7 @@ TEST_CASE("test_FeatureHubBase", "[FeatureHub][BasicFunction]") {
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
}
SECTION("FeatureHub search top-k") {
@@ -115,13 +115,14 @@ TEST_CASE("test_FeatureHubBase", "[FeatureHub][BasicFunction]") {
REQUIRE(coverIds.size() == results.size);
for (int i = 0; i < results.size; ++i) {
REQUIRE(std::find(coverIds.begin(), coverIds.end(), results.customIds[i]) != coverIds.end());
REQUIRE(std::find(coverIds.begin(), coverIds.end(), results.customIds[i]) !=
coverIds.end());
}
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
}
SECTION("Repeat the enable and disable tests") {
@@ -135,7 +136,6 @@ TEST_CASE("test_FeatureHubBase", "[FeatureHub][BasicFunction]") {
configuration.searchMode = HF_SEARCH_MODE_EXHAUSTIVE;
configuration.searchThreshold = 0.48f;
ret = HFFeatureHubDataEnable(configuration);
REQUIRE(ret == HSUCCEED);
@@ -148,7 +148,7 @@ TEST_CASE("test_FeatureHubBase", "[FeatureHub][BasicFunction]") {
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HERR_FT_HUB_DISABLE_REPETITION);
delete []dbPathStr;
delete[] dbPathStr;
}
SECTION("Only memory storage is used") {
@@ -162,9 +162,7 @@ TEST_CASE("test_FeatureHubBase", "[FeatureHub][BasicFunction]") {
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
}
}
TEST_CASE("test_ConcurrencyInsertion", "[FeatureHub][Concurrency]") {
@@ -212,7 +210,8 @@ TEST_CASE("test_ConcurrencyInsertion", "[FeatureHub][Concurrency]") {
feature.data = feat.data();
HFFaceFeatureIdentity featureIdentity = {0};
featureIdentity.feature = &feature;
featureIdentity.customId = beginGenId + j + i * insertsPerThread; // 确保 customId 唯一
featureIdentity.customId =
beginGenId + j + i * insertsPerThread; // 确保 customId 唯一
featureIdentity.tag = nameBuffer.data();
auto ret = HFFeatureHubInsertFeature(featureIdentity);
REQUIRE(ret == HSUCCEED);
@@ -227,15 +226,16 @@ TEST_CASE("test_ConcurrencyInsertion", "[FeatureHub][Concurrency]") {
HInt32 count;
ret = HFFeatureHubGetFaceCount(&count);
REQUIRE(ret == HSUCCEED);
REQUIRE(count == baseNum + numThreads * insertsPerThread); // Ensure that the previous base data is added to the newly inserted data
REQUIRE(count ==
baseNum + numThreads * insertsPerThread); // Ensure that the previous base data is
// added to the newly inserted data
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
}
TEST_CASE("test_ConcurrencyRemove", "[FeatureHub][Concurrency]") {
DRAW_SPLIT_LINE
TEST_PRINT_OUTPUT(true);
@@ -311,8 +311,7 @@ TEST_CASE("test_ConcurrencyRemove", "[FeatureHub][Concurrency]") {
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
}
TEST_CASE("test_ConcurrencySearch", "[FeatureHub][Concurrency]") {
@@ -375,7 +374,8 @@ TEST_CASE("test_ConcurrencySearch", "[FeatureHub][Concurrency]") {
HFFaceFeatureIdentity identity = {0};
ret = HFFeatureHubGetFaceIdentity(index, &identity);
REQUIRE(ret == HSUCCEED);
std::vector<HFloat> feature(identity.feature->data, identity.feature->data + identity.feature->size);
std::vector<HFloat> feature(identity.feature->data,
identity.feature->data + identity.feature->size);
auto simFeat = SimulateSimilarVector(feature);
HFFaceFeature simFeature = {0};
simFeature.data = simFeat.data();
@@ -388,7 +388,6 @@ TEST_CASE("test_ConcurrencySearch", "[FeatureHub][Concurrency]") {
REQUIRE(ret == HSUCCEED);
REQUIRE(cosine > 0.80f);
similarFeatures.push_back(feature);
}
REQUIRE(similarFeatures.size() == numberOfSimilar);
@@ -419,7 +418,7 @@ TEST_CASE("test_ConcurrencySearch", "[FeatureHub][Concurrency]") {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(0, preDataSample - 1);
for (int j = 0; j < 50; ++j) { // Each thread performs 50 similar searches
for (int j = 0; j < 50; ++j) { // Each thread performs 50 similar searches
int idx = dis(gen);
auto targetId = targetIds[idx];
HFFaceFeature feature = {0};
@@ -449,11 +448,9 @@ TEST_CASE("test_ConcurrencySearch", "[FeatureHub][Concurrency]") {
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
}
TEST_CASE("test_FeatureCache", "[FeatureHub][Concurrency]") {
DRAW_SPLIT_LINE
TEST_PRINT_OUTPUT(true);
@@ -492,7 +489,6 @@ TEST_CASE("test_FeatureCache", "[FeatureHub][Concurrency]") {
simFeature.data = simVec.data();
simFeature.size = simVec.size();
for (int i = 0; i < 10; ++i) {
HFFaceFeatureIdentity capture = {0};
ret = HFFeatureHubGetFaceIdentity(12, &capture);
@@ -506,12 +502,116 @@ TEST_CASE("test_FeatureCache", "[FeatureHub][Concurrency]") {
ret = HFFaceComparison(target, simFeature, &cosine);
REQUIRE(cosine > 0.8f);
REQUIRE(ret == HSUCCEED);
}
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
}
}
TEST_CASE("test_DataPersistence", "[feature_manage]") {
DRAW_SPLIT_LINE
TEST_PRINT_OUTPUT(true);
// Generate 10 random feature
std::vector<std::vector<HFloat>> features;
std::vector<std::string> identities;
for (int i = 0; i < 10; ++i) {
auto feat = GenerateRandomFeature(512);
features.push_back(feat);
identities.push_back("id_" + std::to_string(i));
}
SECTION("Insert") {
HResult ret;
HFFeatureHubConfiguration configuration = {0};
auto dbPath = GET_SAVE_DATA(".test");
HString dbPathStr = new char[dbPath.size() + 1];
std::strcpy(dbPathStr, dbPath.c_str());
configuration.enablePersistence = 1;
configuration.dbPath = dbPathStr;
configuration.featureBlockNum = 20;
configuration.searchMode = HF_SEARCH_MODE_EXHAUSTIVE;
configuration.searchThreshold = 0.48f;
if (std::remove(configuration.dbPath) != 0) {
spdlog::trace("Maybe the file does not exist");
}
ret = HFFeatureHubDataEnable(configuration);
REQUIRE(ret == HSUCCEED);
for (size_t i = 0; i < features.size(); i++) {
HFFaceFeature feature = {0};
feature.data = features[i].data();
feature.size = features[i].size();
HFFaceFeatureIdentity identity = {0};
identity.feature = &feature;
identity.tag = const_cast<char *>(identities[i].c_str());
identity.customId = i;
ret = HFFeatureHubInsertFeature(identity);
REQUIRE(ret == HSUCCEED);
// Get the feature from the database
HFFaceFeatureIdentity capture = {0};
ret = HFFeatureHubGetFaceIdentity(i, &capture);
REQUIRE(ret == HSUCCEED);
// Check the feature
HFFaceFeature target = {0};
target.data = capture.feature->data;
target.size = capture.feature->size;
HFloat cosine;
ret = HFFaceComparison(target, feature, &cosine);
REQUIRE(ret == HSUCCEED);
REQUIRE(cosine > 0.99f);
}
// Check number of faces
HInt32 count;
ret = HFFeatureHubGetFaceCount(&count);
REQUIRE(ret == HSUCCEED);
REQUIRE(count == features.size());
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete[] dbPathStr;
}
SECTION("Check") {
HResult ret;
HFFeatureHubConfiguration configuration = {0};
auto dbPath = GET_SAVE_DATA(".test");
HString dbPathStr = new char[dbPath.size() + 1];
std::strcpy(dbPathStr, dbPath.c_str());
configuration.enablePersistence = 1;
configuration.dbPath = dbPathStr;
configuration.featureBlockNum = 20;
ret = HFFeatureHubDataEnable(configuration);
REQUIRE(ret == HSUCCEED);
// Check number of faces
HInt32 count;
ret = HFFeatureHubGetFaceCount(&count);
REQUIRE(ret == HSUCCEED);
REQUIRE(count == features.size());
// Check every face vector
for (size_t i = 0; i < features.size(); i++) {
HFFaceFeatureIdentity identity = {0};
ret = HFFeatureHubGetFaceIdentity(i, &identity);
REQUIRE(ret == HSUCCEED);
REQUIRE(identity.customId == i);
REQUIRE(std::string(identity.tag) == identities[i]);
REQUIRE(identity.feature->size == features[i].size());
}
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete[] dbPathStr;
}
}

View File

@@ -102,18 +102,16 @@ TEST_CASE("test_FeatureManage", "[feature_manage]") {
REQUIRE(ret == HSUCCEED);
CHECK(num == 0);
// Finish
ret = HFReleaseInspireFaceSession(session);
REQUIRE(ret == HSUCCEED);
ret = HFReleaseImageStream(imgHandle);
REQUIRE(ret == HSUCCEED);
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete[]dbPathStr;
delete[] dbPathStr;
}
SECTION("Import a large faces data") {
@@ -151,12 +149,11 @@ TEST_CASE("test_FeatureManage", "[feature_manage]") {
REQUIRE(ret == HSUCCEED);
CHECK(count == numOfNeedImport);
// Finish
ret = HFReleaseInspireFaceSession(session);
REQUIRE(ret == HSUCCEED);
delete[]dbPathStr;
delete[] dbPathStr;
#else
TEST_PRINT("The test case that uses LFW is not enabled, so it will be skipped.");
@@ -165,7 +162,8 @@ TEST_CASE("test_FeatureManage", "[feature_manage]") {
SECTION("Faces feature CURD") {
#ifdef ISF_ENABLE_USE_LFW_DATA
// This section needs to be connected to the "Import a large faces data" section before it can be executed
// This section needs to be connected to the "Import a large faces data" section before it
// can be executed
HResult ret;
HFSessionCustomParameter parameter = {0};
parameter.enable_recognition = 1;
@@ -213,7 +211,7 @@ TEST_CASE("test_FeatureManage", "[feature_manage]") {
REQUIRE(ret == HSUCCEED);
// Search again
ret = HFFeatureHubFaceSearch(feature, &confidence, &searchedIdentity);
// spdlog::info("{}", confidence);
// spdlog::info("{}", confidence);
REQUIRE(ret == HSUCCEED);
CHECK(searchedIdentity.customId == -1);
@@ -225,7 +223,6 @@ TEST_CASE("test_FeatureManage", "[feature_manage]") {
ret = HFFeatureHubInsertFeature(againIdentity);
REQUIRE(ret == HSUCCEED);
// Search again
HFFaceFeatureIdentity searchedAgainIdentity = {0};
ret = HFFeatureHubFaceSearch(feature, &confidence, &searchedAgainIdentity);
@@ -267,7 +264,7 @@ TEST_CASE("test_FeatureManage", "[feature_manage]") {
ret = HFFeatureHubFaceUpdate(updateIdentity);
REQUIRE(ret == HSUCCEED);
//
//
// Prepare a zy query image
cv::Mat zyImageQuery = cv::imread(GET_DATA("data/bulk/woman_search.jpeg"));
HFImageData imageDataZyQuery = {0};
@@ -279,16 +276,17 @@ TEST_CASE("test_FeatureManage", "[feature_manage]") {
HFImageStream imgHandleZyQuery;
ret = HFCreateImageStream(&imageDataZyQuery, &imgHandleZyQuery);
REQUIRE(ret == HSUCCEED);
//
//
// Extract basic face information from photos
HFMultipleFaceData multipleFaceDataZyQuery = {0};
ret = HFExecuteFaceTrack(session, imgHandleZyQuery, &multipleFaceDataZyQuery);
REQUIRE(ret == HSUCCEED);
REQUIRE(multipleFaceDataZyQuery.detectedNum > 0);
//
//
// Extract face feature
HFFaceFeature featureZyQuery = {0};
ret = HFFaceFeatureExtract(session, imgHandleZyQuery, multipleFaceDataZyQuery.tokens[0], &featureZyQuery);
ret = HFFaceFeatureExtract(session, imgHandleZyQuery, multipleFaceDataZyQuery.tokens[0],
&featureZyQuery);
REQUIRE(ret == HSUCCEED);
ret = HFReleaseImageStream(imgHandleZyQuery);
@@ -311,7 +309,6 @@ TEST_CASE("test_FeatureManage", "[feature_manage]") {
TEST_PRINT("The test case that uses LFW is not enabled, so it will be skipped.");
#endif
}
}
TEST_CASE("test_SearchTopK", "[feature_search_top_k]") {
@@ -356,16 +353,22 @@ TEST_CASE("test_SearchTopK", "[feature_search_top_k]") {
// Prepare multiple photos of a person
std::vector<std::string> photos = {
GET_DATA("data/RD/d1.jpeg"),
GET_DATA("data/RD/d2.jpeg"),
GET_DATA("data/RD/d3.jpeg"),
GET_DATA("data/RD/d4.jpeg"),
GET_DATA("data/RD/d1.jpeg"),
GET_DATA("data/RD/d2.jpeg"),
GET_DATA("data/RD/d3.jpeg"),
GET_DATA("data/RD/d4.jpeg"),
};
std::vector<std::string> tags = {
"d1", "d2", "d3", "d4",
"d1",
"d2",
"d3",
"d4",
};
std::vector<HInt32> updateIds = {
5, 163, 670, 971,
5,
163,
670,
971,
};
REQUIRE(photos.size() == tags.size());
REQUIRE(updateIds.size() == tags.size());
@@ -395,8 +398,8 @@ TEST_CASE("test_SearchTopK", "[feature_search_top_k]") {
ret = HFFaceFeatureExtract(session, imgHandle, multipleFaceData.tokens[0], &feature);
REQUIRE(ret == HSUCCEED);
char* cstr = new char[tags[i].size() + 1]; // Dynamically allocate memory for the name
strcpy(cstr, tags[i].c_str()); // Copy the name into the allocated memory
char* cstr = new char[tags[i].size() + 1]; // Dynamically allocate memory for the name
strcpy(cstr, tags[i].c_str()); // Copy the name into the allocated memory
// Create identity
HFFaceFeatureIdentity identity = {0};
@@ -410,7 +413,7 @@ TEST_CASE("test_SearchTopK", "[feature_search_top_k]") {
ret = HFReleaseImageStream(imgHandle);
REQUIRE(ret == HSUCCEED);
delete[] cstr; // Clean up the dynamically allocated memory
delete[] cstr; // Clean up the dynamically allocated memory
}
// Prepare a target photo for a face top-k search
@@ -443,7 +446,8 @@ TEST_CASE("test_SearchTopK", "[feature_search_top_k]") {
CHECK(topk.size == photos.size());
for (int i = 0; i < topk.size; ++i) {
TEST_PRINT("Top-{} -> id: {}, {}", i + 1, topk.customIds[i], topk.confidence[i]);
CHECK(std::find(updateIds.begin(), updateIds.end(), topk.customIds[i]) != updateIds.end());
CHECK(std::find(updateIds.begin(), updateIds.end(), topk.customIds[i]) !=
updateIds.end());
}
ret = HFReleaseImageStream(imgHandle);
@@ -455,13 +459,12 @@ TEST_CASE("test_SearchTopK", "[feature_search_top_k]") {
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete[]dbPathStr;
delete[] dbPathStr;
}
#endif
}
TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
// Test the search time at 1k, 5k and 10k of the face library (the target face is at the back).
SECTION("Search face benchmark from 1k") {
#if defined(ISF_ENABLE_BENCHMARK) && defined(ISF_ENABLE_USE_LFW_DATA)
@@ -492,7 +495,7 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
auto lfwDir = getLFWFunneledDir();
auto dataList = LoadLFWFunneledValidData(lfwDir, getTestLFWFunneledTxt());
// TEST_PRINT("{}", dataList.size());
// TEST_PRINT("{}", dataList.size());
auto importStatus = ImportLFWFunneledValidData(session, dataList, numOfNeedImport);
REQUIRE(importStatus);
HInt32 count;
@@ -526,17 +529,20 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
// Search for a face
HFloat confidence;
HFFaceFeatureIdentity searchedIdentity = {0};
auto start = (double) cv::getTickCount();
auto start = (double)cv::getTickCount();
for (int i = 0; i < loop; ++i) {
ret = HFFeatureHubFaceSearch(feature, &confidence, &searchedIdentity);
}
auto cost = ((double) cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
auto cost = ((double)cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
REQUIRE(ret == HSUCCEED);
REQUIRE(searchedIdentity.customId == 999);
REQUIRE(std::string(searchedIdentity.tag) == "Teresa_Williams");
TEST_PRINT("<Benchmark> Search Face from 1k -> Loop: {}, Total Time: {:.5f}ms, Average Time: {:.5f}ms", loop, cost, cost / loop);
TEST_PRINT(
"<Benchmark> Search Face from 1k -> Loop: {}, Total Time: {:.5f}ms, Average Time: "
"{:.5f}ms",
loop, cost, cost / loop);
BenchmarkRecord record(getBenchmarkRecordFile());
record.insertBenchmarkData("Search Face from 1k", loop, cost, cost / loop);
@@ -544,15 +550,15 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
ret = HFReleaseInspireFaceSession(session);
REQUIRE(ret == HSUCCEED);
ret = HFReleaseImageStream(imgHandle);
REQUIRE(ret == HSUCCEED);
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
#else
TEST_PRINT("Skip face search benchmark test, you need to enable both lfw and benchmark test.");
TEST_PRINT(
"Skip face search benchmark test, you need to enable both lfw and benchmark test.");
#endif
}
@@ -620,17 +626,20 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
// Search for a face
HFloat confidence;
HFFaceFeatureIdentity searchedIdentity = {0};
auto start = (double) cv::getTickCount();
auto start = (double)cv::getTickCount();
for (int i = 0; i < loop; ++i) {
ret = HFFeatureHubFaceSearch(feature, &confidence, &searchedIdentity);
}
auto cost = ((double) cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
auto cost = ((double)cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
REQUIRE(ret == HSUCCEED);
REQUIRE(searchedIdentity.customId == 4998);
REQUIRE(std::string(searchedIdentity.tag) == "Mary_Katherine_Smart");
TEST_PRINT("<Benchmark> Search Face from 5k -> Loop: {}, Total Time: {:.5f}ms, Average Time: {:.5f}ms", loop, cost, cost / loop);
TEST_PRINT(
"<Benchmark> Search Face from 5k -> Loop: {}, Total Time: {:.5f}ms, Average Time: "
"{:.5f}ms",
loop, cost, cost / loop);
BenchmarkRecord record(getBenchmarkRecordFile());
record.insertBenchmarkData("Search Face from 5k", loop, cost, cost / loop);
@@ -643,9 +652,10 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
#else
TEST_PRINT("Skip face search benchmark test, you need to enable both lfw and benchmark test.");
TEST_PRINT(
"Skip face search benchmark test, you need to enable both lfw and benchmark test.");
#endif
}
@@ -680,7 +690,7 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
auto lfwDir = getLFWFunneledDir();
auto dataList = LoadLFWFunneledValidData(lfwDir, getTestLFWFunneledTxt());
// TEST_PRINT("{}", dataList.size());
// TEST_PRINT("{}", dataList.size());
auto importStatus = ImportLFWFunneledValidData(session, dataList, numOfNeedImport);
REQUIRE(importStatus);
HInt32 count;
@@ -748,17 +758,20 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
// Search for a face
HFloat confidence;
HFFaceFeatureIdentity searchedIdentity = {0};
auto start = (double) cv::getTickCount();
auto start = (double)cv::getTickCount();
for (int i = 0; i < loop; ++i) {
ret = HFFeatureHubFaceSearch(feature, &confidence, &searchedIdentity);
}
auto cost = ((double) cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
auto cost = ((double)cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
REQUIRE(ret == HSUCCEED);
REQUIRE(searchedIdentity.customId == updateId);
REQUIRE(std::string(searchedIdentity.tag) == "ZY");
TEST_PRINT("<Benchmark> Search Face from 10k -> Loop: {}, Total Time: {:.5f}ms, Average Time: {:.5f}ms", loop, cost, cost / loop);
TEST_PRINT(
"<Benchmark> Search Face from 10k -> Loop: {}, Total Time: {:.5f}ms, Average Time: "
"{:.5f}ms",
loop, cost, cost / loop);
BenchmarkRecord record(getBenchmarkRecordFile());
record.insertBenchmarkData("Search Face from 10k", loop, cost, cost / loop);
@@ -767,15 +780,15 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
ret = HFReleaseInspireFaceSession(session);
REQUIRE(ret == HSUCCEED);
ret = HFReleaseImageStream(imgHandle);
REQUIRE(ret == HSUCCEED);
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
#else
TEST_PRINT("Skip face search benchmark test, you need to enable both lfw and benchmark test.");
TEST_PRINT(
"Skip face search benchmark test, you need to enable both lfw and benchmark test.");
#endif
}
@@ -789,7 +802,7 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
parameter.enable_recognition = 1;
HFDetectMode detMode = HF_DETECT_MODE_ALWAYS_DETECT;
HFSession session;
ret = HFCreateInspireFaceSession(parameter, detMode, 3, -1, -1, &session);
ret = HFCreateInspireFaceSession(parameter, detMode, 3, -1, -1, &session);
REQUIRE(ret == HSUCCEED);
HFFeatureHubConfiguration configuration = {0};
auto dbPath = GET_SAVE_DATA(".test");
@@ -829,7 +842,8 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
// Extract face feature
HFloat featureCacheZy[featureNum];
ret = HFFaceFeatureExtractCpy(session, imgHandleZy, multipleFaceDataZy.tokens[0], featureCacheZy);
ret = HFFaceFeatureExtractCpy(session, imgHandleZy, multipleFaceDataZy.tokens[0],
featureCacheZy);
HFFaceFeature featureZy = {0};
featureZy.size = featureNum;
featureZy.data = featureCacheZy;
@@ -845,29 +859,32 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
HFImageStream imgHandleZyQuery;
ret = HFCreateImageStream(&imageDataZyQuery, &imgHandleZyQuery);
REQUIRE(ret == HSUCCEED);
//
//
// Extract basic face information from photos
HFMultipleFaceData multipleFaceDataZyQuery = {0};
ret = HFExecuteFaceTrack(session, imgHandleZyQuery, &multipleFaceDataZyQuery);
REQUIRE(ret == HSUCCEED);
REQUIRE(multipleFaceDataZyQuery.detectedNum > 0);
//
//
// Extract face feature
HFloat featureCacheZyQuery[featureNum];
ret = HFFaceFeatureExtractCpy(session, imgHandleZyQuery, multipleFaceDataZyQuery.tokens[0], featureCacheZyQuery);
ret = HFFaceFeatureExtractCpy(session, imgHandleZyQuery, multipleFaceDataZyQuery.tokens[0],
featureCacheZyQuery);
HFFaceFeature featureZyQuery = {0};
featureZyQuery.data = featureCacheZyQuery;
featureZyQuery.size = featureNum;
REQUIRE(ret == HSUCCEED);
auto start = (double) cv::getTickCount();
auto start = (double)cv::getTickCount();
for (int i = 0; i < loop; ++i) {
HFloat compRes;
ret = HFFaceComparison(featureZy, featureZyQuery, &compRes);
}
auto cost = ((double) cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
auto cost = ((double)cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
REQUIRE(ret == HSUCCEED);
TEST_PRINT("<Benchmark> Face Comparison -> Loop: {}, Total Time: {:.5f}ms, Average Time: {:.5f}ms", loop, cost, cost / loop);
TEST_PRINT(
"<Benchmark> Face Comparison -> Loop: {}, Total Time: {:.5f}ms, Average Time: {:.5f}ms",
loop, cost, cost / loop);
BenchmarkRecord record(getBenchmarkRecordFile());
record.insertBenchmarkData("Face Comparison", loop, cost, cost / loop);
@@ -880,7 +897,7 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
REQUIRE(ret == HSUCCEED);
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
#else
TEST_PRINT("The benchmark is not enabled, so all relevant test cases are skipped.");
#endif
@@ -896,7 +913,7 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
parameter.enable_recognition = 1;
HFDetectMode detMode = HF_DETECT_MODE_ALWAYS_DETECT;
HFSession session;
ret = HFCreateInspireFaceSession(parameter, detMode, 3,-1, -1, &session);
ret = HFCreateInspireFaceSession(parameter, detMode, 3, -1, -1, &session);
REQUIRE(ret == HSUCCEED);
HFFeatureHubConfiguration configuration = {0};
auto dbPath = GET_SAVE_DATA(".test");
@@ -934,13 +951,15 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
// Extract face feature
HFFaceFeature feature = {0};
auto start = (double) cv::getTickCount();
auto start = (double)cv::getTickCount();
for (int i = 0; i < loop; ++i) {
ret = HFFaceFeatureExtract(session, imgHandle, multipleFaceData.tokens[0], &feature);
}
auto cost = ((double) cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
auto cost = ((double)cv::getTickCount() - start) / cv::getTickFrequency() * 1000;
REQUIRE(ret == HSUCCEED);
TEST_PRINT("<Benchmark> Face Extract -> Loop: {}, Total Time: {:.5f}ms, Average Time: {:.5f}ms", loop, cost, cost / loop);
TEST_PRINT(
"<Benchmark> Face Extract -> Loop: {}, Total Time: {:.5f}ms, Average Time: {:.5f}ms",
loop, cost, cost / loop);
BenchmarkRecord record(getBenchmarkRecordFile());
record.insertBenchmarkData("Face Extract", loop, cost, cost / loop);
@@ -951,9 +970,11 @@ TEST_CASE("test_FeatureBenchmark", "[feature_benchmark]") {
REQUIRE(ret == HSUCCEED);
ret = HFFeatureHubDataDisable();
REQUIRE(ret == HSUCCEED);
delete []dbPathStr;
delete[] dbPathStr;
#else
TEST_PRINT("Skip the face feature extraction benchmark test. To run it, you need to turn on the benchmark test.");
TEST_PRINT(
"Skip the face feature extraction benchmark test. To run it, you need to turn on the "
"benchmark test.");
#endif
}
}
}