mirror of
https://github.com/deepinsight/insightface.git
synced 2026-01-21 10:00:17 +00:00
Update
This commit is contained in:
@@ -5,85 +5,91 @@ import click
|
||||
import numpy as np
|
||||
|
||||
race_tags = ["Black", "Asian", "Latino/Hispanic", "Middle Eastern", "White"]
|
||||
gender_tags = ["Female", "Male", ]
|
||||
age_bracket_tags = ["0-2 years old", "3-9 years old", "10-19 years old", "20-29 years old", "30-39 years old",
|
||||
"40-49 years old", "50-59 years old", "60-69 years old", "more than 70 years old"]
|
||||
gender_tags = ["Female", "Male"]
|
||||
age_bracket_tags = [
|
||||
"0-2 years old", "3-9 years old", "10-19 years old", "20-29 years old", "30-39 years old",
|
||||
"40-49 years old", "50-59 years old", "60-69 years old", "more than 70 years old"
|
||||
]
|
||||
|
||||
@click.command()
|
||||
@click.argument('image_path')
|
||||
def case_face_detection_image(image_path):
|
||||
@click.option('--show', is_flag=True, help='Display the image with detected faces.')
|
||||
def case_face_detection_image(image_path, show):
|
||||
"""
|
||||
This is a sample application for face detection and tracking using an image.
|
||||
It also includes pipeline extensions such as RGB liveness, mask detection, and face quality evaluation.
|
||||
"""
|
||||
# Optional features, loaded during session creation based on the modules specified.
|
||||
opt = isf.HF_ENABLE_FACE_RECOGNITION | isf.HF_ENABLE_QUALITY | isf.HF_ENABLE_MASK_DETECT | isf.HF_ENABLE_LIVENESS | isf.HF_ENABLE_INTERACTION | isf.HF_ENABLE_FACE_ATTRIBUTE
|
||||
opt = isf.HF_ENABLE_FACE_RECOGNITION | isf.HF_ENABLE_QUALITY | isf.HF_ENABLE_MASK_DETECT | \
|
||||
isf.HF_ENABLE_LIVENESS | isf.HF_ENABLE_INTERACTION | isf.HF_ENABLE_FACE_ATTRIBUTE
|
||||
session = isf.InspireFaceSession(opt, isf.HF_DETECT_MODE_ALWAYS_DETECT)
|
||||
|
||||
# Set detection confidence threshold
|
||||
session.set_detection_confidence_threshold(0.5)
|
||||
|
||||
# Load the image using OpenCV.
|
||||
# Load image
|
||||
image = cv2.imread(image_path)
|
||||
assert image is not None, "Please check that the image path is correct."
|
||||
|
||||
# Perform face detection on the image.
|
||||
# Dynamic drawing parameters (adjusted to image size)
|
||||
h, w = image.shape[:2]
|
||||
scale = max(w, h) / 1000.0
|
||||
line_thickness = max(1, int(2 * scale))
|
||||
circle_radius = max(1, int(1.5 * scale))
|
||||
font_scale = 0.5 * scale
|
||||
|
||||
# Detect faces
|
||||
faces = session.face_detection(image)
|
||||
print(f"face detection: {len(faces)} found")
|
||||
|
||||
# Copy the image for drawing the bounding boxes.
|
||||
|
||||
draw = image.copy()
|
||||
for idx, face in enumerate(faces):
|
||||
print(f"{'==' * 20}")
|
||||
print(f"idx: {idx}")
|
||||
print(f"detection confidence: {face.detection_confidence}")
|
||||
# Print Euler angles of the face.
|
||||
print(f"roll: {face.roll}, yaw: {face.yaw}, pitch: {face.pitch}")
|
||||
|
||||
# Get face bounding box
|
||||
x1, y1, x2, y2 = face.location
|
||||
|
||||
# Calculate center, size, and angle
|
||||
center = ((x1 + x2) / 2, (y1 + y2) / 2)
|
||||
size = (x2 - x1, y2 - y1)
|
||||
angle = face.roll
|
||||
|
||||
# Apply rotation to the bounding box corners
|
||||
rect = ((center[0], center[1]), (size[0], size[1]), angle)
|
||||
box = cv2.boxPoints(rect)
|
||||
box = box.astype(int)
|
||||
box = cv2.boxPoints(rect).astype(int)
|
||||
cv2.drawContours(draw, [box], 0, (100, 180, 29), line_thickness)
|
||||
|
||||
# Draw the rotated bounding box
|
||||
cv2.drawContours(draw, [box], 0, (100, 180, 29), 2)
|
||||
|
||||
# Draw landmarks
|
||||
# Draw landmark
|
||||
lmk = session.get_face_dense_landmark(face)
|
||||
for x, y in lmk.astype(int):
|
||||
cv2.circle(draw, (x, y), 0, (220, 100, 0), 2)
|
||||
cv2.circle(draw, (x, y), circle_radius, (220, 100, 0), -1)
|
||||
|
||||
# Features must be enabled during session creation to use them here.
|
||||
select_exec_func = isf.HF_ENABLE_QUALITY | isf.HF_ENABLE_MASK_DETECT | isf.HF_ENABLE_LIVENESS | isf.HF_ENABLE_INTERACTION | isf.HF_ENABLE_FACE_ATTRIBUTE
|
||||
# Execute the pipeline to obtain richer face information.
|
||||
# Optional: Add detection confidence (text) on the face box
|
||||
# label = f"{face.detection_confidence:.2f}"
|
||||
# cv2.putText(draw, label, (x1, max(y1 - 10, 0)), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
# font_scale, (255, 255, 255), line_thickness)
|
||||
|
||||
# Execute extended functions (optional modules)
|
||||
select_exec_func = isf.HF_ENABLE_QUALITY | isf.HF_ENABLE_MASK_DETECT | \
|
||||
isf.HF_ENABLE_LIVENESS | isf.HF_ENABLE_INTERACTION | isf.HF_ENABLE_FACE_ATTRIBUTE
|
||||
extends = session.face_pipeline(image, faces, select_exec_func)
|
||||
|
||||
for idx, ext in enumerate(extends):
|
||||
print(f"{'==' * 20}")
|
||||
print(f"idx: {idx}")
|
||||
# For these pipeline results, you can set thresholds based on the specific scenario to make judgments.
|
||||
print(f"quality: {ext.quality_confidence}")
|
||||
print(f"rgb liveness: {ext.rgb_liveness_confidence}")
|
||||
print(f"face mask: {ext.mask_confidence}")
|
||||
print(
|
||||
f"face eyes status: left eye: {ext.left_eye_status_confidence} right eye: {ext.right_eye_status_confidence}")
|
||||
print(f"face eyes status: left eye: {ext.left_eye_status_confidence} right eye: {ext.right_eye_status_confidence}")
|
||||
print(f"gender: {gender_tags[ext.gender]}")
|
||||
print(f"race: {race_tags[ext.race]}")
|
||||
print(f"age: {age_bracket_tags[ext.age_bracket]}")
|
||||
|
||||
# Save the annotated image to the 'tmp/' directory.
|
||||
save_path = os.path.join("tmp/", "det.jpg")
|
||||
# Save the annotated image
|
||||
save_path = os.path.join("tmp", "det.jpg")
|
||||
os.makedirs("tmp", exist_ok=True)
|
||||
cv2.imwrite(save_path, draw)
|
||||
if show:
|
||||
cv2.imshow("Face Detection", draw)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
print(f"\nSave annotated image to {save_path}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
os.makedirs("tmp", exist_ok=True)
|
||||
case_face_detection_image()
|
||||
|
||||
Reference in New Issue
Block a user