mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
Update README.md
This commit is contained in:
17
README.md
17
README.md
@@ -5,6 +5,8 @@
|
||||
|
||||
### Recent Update
|
||||
|
||||
**`2018.01.30`**: We provide a *LResNet50E-IR* model which can achieve **`99.80@LFW`**. See [Pretrained-Models](#pretrained-models) for detail.
|
||||
|
||||
**`2018.01.29`**: Caffe *LResNet34E-IR* model is available now. We get it by converting original MXNet model to Caffe format but there's some performance drop. See [Pretrained-Models](#pretrained-models) for detail.
|
||||
|
||||
**`2018.01.27`**: MS1M clean list now available at [here](https://pan.baidu.com/s/1eTn6O62). Aligned facescrub images(112x112) can be downloaded [here](https://pan.baidu.com/s/1ghcpIH9).
|
||||
@@ -222,7 +224,18 @@ export MXNET_ENGINE_TYPE=ThreadedEnginePerDevice
|
||||
4. Start to run megaface development kit to produce final result.
|
||||
|
||||
### Pretrained-Models
|
||||
1. [LResNet34E-IR@BaiduDrive](https://pan.baidu.com/s/1jKahEXw)
|
||||
|
||||
1. [LResNet50E-IR@BaiduDrive](https://pan.baidu.com/s/1mj6X7MK)
|
||||
|
||||
Performance:
|
||||
|
||||
| Method | LFW(%) | CFP-FF(%) | CFP-FP(%) | AgeDB-30(%) | MegaFace1M(%) |
|
||||
| ------- | ------ | --------- | --------- | ----------- | ------------- |
|
||||
| Ours | **99.80** | 99.83 | 92.74 | 97.76 | - |
|
||||
|
||||
You can use `$INSIGHTFACE/src/eval/verification.py` to test all validation accuracy by pretrained models.
|
||||
|
||||
2. [LResNet34E-IR@BaiduDrive](https://pan.baidu.com/s/1jKahEXw)
|
||||
|
||||
Performance:
|
||||
|
||||
@@ -230,7 +243,7 @@ export MXNET_ENGINE_TYPE=ThreadedEnginePerDevice
|
||||
| ------- | ------ | --------- | --------- | ----------- | ------------- |
|
||||
| Ours | 99.65 | 99.77 | 92.12 | 97.70 | **96.70** |
|
||||
|
||||
2. **`Caffe`** [LResNet34E-IR@BaiduDrive](https://pan.baidu.com/s/1bpRsvYR), got by converting above MXNet model.
|
||||
3. **`Caffe`** [LResNet34E-IR@BaiduDrive](https://pan.baidu.com/s/1bpRsvYR), got by converting above MXNet model.
|
||||
|
||||
Performance:
|
||||
|
||||
|
||||
Reference in New Issue
Block a user