diff --git a/README.md b/README.md index 26a9b07..6f32df9 100644 --- a/README.md +++ b/README.md @@ -5,6 +5,8 @@ ### Recent Update + **`2018.01.30`**: We provide a *LResNet50E-IR* model which can achieve **`99.80@LFW`**. See [Pretrained-Models](#pretrained-models) for detail. + **`2018.01.29`**: Caffe *LResNet34E-IR* model is available now. We get it by converting original MXNet model to Caffe format but there's some performance drop. See [Pretrained-Models](#pretrained-models) for detail. **`2018.01.27`**: MS1M clean list now available at [here](https://pan.baidu.com/s/1eTn6O62). Aligned facescrub images(112x112) can be downloaded [here](https://pan.baidu.com/s/1ghcpIH9). @@ -222,7 +224,18 @@ export MXNET_ENGINE_TYPE=ThreadedEnginePerDevice 4. Start to run megaface development kit to produce final result. ### Pretrained-Models -   1. [LResNet34E-IR@BaiduDrive](https://pan.baidu.com/s/1jKahEXw) + + 1. [LResNet50E-IR@BaiduDrive](https://pan.baidu.com/s/1mj6X7MK) + + Performance: + + | Method | LFW(%) | CFP-FF(%) | CFP-FP(%) | AgeDB-30(%) | MegaFace1M(%) | + | ------- | ------ | --------- | --------- | ----------- | ------------- | + | Ours | **99.80** | 99.83 | 92.74 | 97.76 | - | + + You can use `$INSIGHTFACE/src/eval/verification.py` to test all validation accuracy by pretrained models. + +   2. [LResNet34E-IR@BaiduDrive](https://pan.baidu.com/s/1jKahEXw) Performance: @@ -230,7 +243,7 @@ export MXNET_ENGINE_TYPE=ThreadedEnginePerDevice | ------- | ------ | --------- | --------- | ----------- | ------------- | | Ours | 99.65 | 99.77 | 92.12 | 97.70 | **96.70** | - 2. **`Caffe`** [LResNet34E-IR@BaiduDrive](https://pan.baidu.com/s/1bpRsvYR), got by converting above MXNet model. + 3. **`Caffe`** [LResNet34E-IR@BaiduDrive](https://pan.baidu.com/s/1bpRsvYR), got by converting above MXNet model. Performance: