mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
add inswapper, to pip 0.7
This commit is contained in:
42
examples/in_swapper/inswapper_main.py
Normal file
42
examples/in_swapper/inswapper_main.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import datetime
|
||||
import numpy as np
|
||||
import os
|
||||
import os.path as osp
|
||||
import glob
|
||||
import cv2
|
||||
import insightface
|
||||
from insightface.app import FaceAnalysis
|
||||
from insightface.data import get_image as ins_get_image
|
||||
|
||||
|
||||
assert insightface.__version__>='0.7'
|
||||
|
||||
def detect_person(img, detector):
|
||||
bboxes, kpss = detector.detect(img)
|
||||
bboxes = np.round(bboxes[:,:4]).astype(np.int)
|
||||
kpss = np.round(kpss).astype(np.int)
|
||||
kpss[:,:,0] = np.clip(kpss[:,:,0], 0, img.shape[1])
|
||||
kpss[:,:,1] = np.clip(kpss[:,:,1], 0, img.shape[0])
|
||||
vbboxes = bboxes.copy()
|
||||
vbboxes[:,0] = kpss[:, 0, 0]
|
||||
vbboxes[:,1] = kpss[:, 0, 1]
|
||||
vbboxes[:,2] = kpss[:, 4, 0]
|
||||
vbboxes[:,3] = kpss[:, 4, 1]
|
||||
return bboxes, vbboxes
|
||||
|
||||
if __name__ == '__main__':
|
||||
app = FaceAnalysis(name='buffalo_l')
|
||||
app.prepare(ctx_id=0, det_size=(640, 640))
|
||||
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=True, download_zip=True)
|
||||
|
||||
|
||||
img = ins_get_image('t1')
|
||||
faces = app.get(img)
|
||||
faces = sorted(faces, key = lambda x : x.bbox[0])
|
||||
assert len(faces)==6
|
||||
source_face = faces[2]
|
||||
for face in faces:
|
||||
img = swapper.get(img, face, source_face, paste_back=True)
|
||||
cv2.imwrite("./t1_swapped.jpg", img)
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ except ImportError:
|
||||
"Unable to import dependency onnxruntime. "
|
||||
)
|
||||
|
||||
__version__ = '0.6.3'
|
||||
__version__ = '0.7'
|
||||
|
||||
from . import model_zoo
|
||||
from . import utils
|
||||
|
||||
105
python-package/insightface/model_zoo/inswapper.py
Normal file
105
python-package/insightface/model_zoo/inswapper.py
Normal file
@@ -0,0 +1,105 @@
|
||||
import time
|
||||
import numpy as np
|
||||
import onnxruntime
|
||||
import cv2
|
||||
import onnx
|
||||
from onnx import numpy_helper
|
||||
from ..utils import face_align
|
||||
|
||||
|
||||
|
||||
|
||||
class INSwapper():
|
||||
def __init__(self, model_file=None, session=None):
|
||||
self.model_file = model_file
|
||||
self.session = session
|
||||
model = onnx.load(self.model_file)
|
||||
graph = model.graph
|
||||
self.emap = numpy_helper.to_array(graph.initializer[-1])
|
||||
self.input_mean = 0.0
|
||||
self.input_std = 255.0
|
||||
#print('input mean and std:', model_file, self.input_mean, self.input_std)
|
||||
if self.session is None:
|
||||
self.session = onnxruntime.InferenceSession(self.model_file, None)
|
||||
inputs = self.session.get_inputs()
|
||||
self.input_names = []
|
||||
for inp in inputs:
|
||||
self.input_names.append(inp.name)
|
||||
outputs = self.session.get_outputs()
|
||||
output_names = []
|
||||
for out in outputs:
|
||||
output_names.append(out.name)
|
||||
self.output_names = output_names
|
||||
assert len(self.output_names)==1
|
||||
output_shape = outputs[0].shape
|
||||
input_cfg = inputs[0]
|
||||
input_shape = input_cfg.shape
|
||||
self.input_shape = input_shape
|
||||
print('inswapper-shape:', self.input_shape)
|
||||
self.input_size = tuple(input_shape[2:4][::-1])
|
||||
|
||||
def forward(self, img, latent):
|
||||
img = (img - self.input_mean) / self.input_std
|
||||
pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0]
|
||||
return pred
|
||||
|
||||
def get(self, img, target_face, source_face, paste_back=True):
|
||||
aimg, M = face_align.norm_crop2(img, target_face.kps, self.input_size[0])
|
||||
blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size,
|
||||
(self.input_mean, self.input_mean, self.input_mean), swapRB=True)
|
||||
latent = source_face.normed_embedding.reshape((1,-1))
|
||||
latent = np.dot(latent, self.emap)
|
||||
latent /= np.linalg.norm(latent)
|
||||
pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0]
|
||||
#print(latent.shape, latent.dtype, pred.shape)
|
||||
img_fake = pred.transpose((0,2,3,1))[0]
|
||||
bgr_fake = np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:,:,::-1]
|
||||
if not paste_back:
|
||||
return bgr_fake, M
|
||||
else:
|
||||
target_img = img
|
||||
fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32)
|
||||
fake_diff = np.abs(fake_diff).mean(axis=2)
|
||||
fake_diff[:2,:] = 0
|
||||
fake_diff[-2:,:] = 0
|
||||
fake_diff[:,:2] = 0
|
||||
fake_diff[:,-2:] = 0
|
||||
IM = cv2.invertAffineTransform(M)
|
||||
img_white = np.full((aimg.shape[0],aimg.shape[1]), 255, dtype=np.float32)
|
||||
bgr_fake = cv2.warpAffine(bgr_fake, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
|
||||
img_white = cv2.warpAffine(img_white, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
|
||||
fake_diff = cv2.warpAffine(fake_diff, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
|
||||
img_white[img_white>20] = 255
|
||||
fthresh = 10
|
||||
fake_diff[fake_diff<fthresh] = 0
|
||||
fake_diff[fake_diff>=fthresh] = 255
|
||||
img_mask = img_white
|
||||
mask_h_inds, mask_w_inds = np.where(img_mask==255)
|
||||
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
|
||||
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
|
||||
mask_size = int(np.sqrt(mask_h*mask_w))
|
||||
k = max(mask_size//10, 10)
|
||||
#k = max(mask_size//20, 6)
|
||||
#k = 6
|
||||
kernel = np.ones((k,k),np.uint8)
|
||||
img_mask = cv2.erode(img_mask,kernel,iterations = 1)
|
||||
kernel = np.ones((2,2),np.uint8)
|
||||
fake_diff = cv2.dilate(fake_diff,kernel,iterations = 1)
|
||||
k = max(mask_size//20, 5)
|
||||
#k = 3
|
||||
#k = 3
|
||||
kernel_size = (k, k)
|
||||
blur_size = tuple(2*i+1 for i in kernel_size)
|
||||
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
|
||||
k = 5
|
||||
kernel_size = (k, k)
|
||||
blur_size = tuple(2*i+1 for i in kernel_size)
|
||||
fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0)
|
||||
img_mask /= 255
|
||||
fake_diff /= 255
|
||||
#img_mask = fake_diff
|
||||
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
|
||||
fake_merged = img_mask * bgr_fake + (1-img_mask) * target_img.astype(np.float32)
|
||||
fake_merged = fake_merged.astype(np.uint8)
|
||||
return fake_merged
|
||||
|
||||
@@ -13,6 +13,7 @@ from .retinaface import *
|
||||
#from .scrfd import *
|
||||
from .landmark import *
|
||||
from .attribute import Attribute
|
||||
from .inswapper import INSwapper
|
||||
from ..utils import download_onnx
|
||||
|
||||
__all__ = ['get_model']
|
||||
@@ -38,18 +39,21 @@ class ModelRouter:
|
||||
def get_model(self, **kwargs):
|
||||
session = PickableInferenceSession(self.onnx_file, **kwargs)
|
||||
print(f'Applied providers: {session._providers}, with options: {session._provider_options}')
|
||||
input_cfg = session.get_inputs()[0]
|
||||
inputs = session.get_inputs()
|
||||
input_cfg = inputs[0]
|
||||
input_shape = input_cfg.shape
|
||||
outputs = session.get_outputs()
|
||||
|
||||
if len(outputs)>=5:
|
||||
return RetinaFace(model_file=self.onnx_file, session=session)
|
||||
elif input_shape[2]==112 and input_shape[3]==112:
|
||||
return ArcFaceONNX(model_file=self.onnx_file, session=session)
|
||||
elif input_shape[2]==192 and input_shape[3]==192:
|
||||
return Landmark(model_file=self.onnx_file, session=session)
|
||||
elif input_shape[2]==96 and input_shape[3]==96:
|
||||
return Attribute(model_file=self.onnx_file, session=session)
|
||||
elif len(inputs)==2 and input_shape[2]==128 and input_shape[3]==128:
|
||||
return INSwapper(model_file=self.onnx_file, session=session)
|
||||
elif input_shape[2]==input_shape[3] and input_shape[2]>=112 and input_shape[2]%16==0:
|
||||
return ArcFaceONNX(model_file=self.onnx_file, session=session)
|
||||
else:
|
||||
#raise RuntimeError('error on model routing')
|
||||
return None
|
||||
@@ -63,11 +67,18 @@ def find_onnx_file(dir_path):
|
||||
paths = sorted(paths)
|
||||
return paths[-1]
|
||||
|
||||
def get_default_providers():
|
||||
return ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
||||
|
||||
def get_default_provider_options():
|
||||
return None
|
||||
|
||||
def get_model(name, **kwargs):
|
||||
root = kwargs.get('root', '~/.insightface')
|
||||
root = os.path.expanduser(root)
|
||||
model_root = osp.join(root, 'models')
|
||||
allow_download = kwargs.get('download', False)
|
||||
download_zip = kwargs.get('download_zip', False)
|
||||
if not name.endswith('.onnx'):
|
||||
model_dir = os.path.join(model_root, name)
|
||||
model_file = find_onnx_file(model_dir)
|
||||
@@ -76,10 +87,12 @@ def get_model(name, **kwargs):
|
||||
else:
|
||||
model_file = name
|
||||
if not osp.exists(model_file) and allow_download:
|
||||
model_file = download_onnx('models', model_file, root=root)
|
||||
assert osp.exists(model_file), 'model_file should exist'
|
||||
assert osp.isfile(model_file), 'model_file should be file'
|
||||
model_file = download_onnx('models', model_file, root=root, download_zip=download_zip)
|
||||
assert osp.exists(model_file), 'model_file %s should exist'%model_file
|
||||
assert osp.isfile(model_file), 'model_file %s should be a file'%model_file
|
||||
router = ModelRouter(model_file)
|
||||
model = router.get_model(providers=kwargs.get('providers'), provider_options=kwargs.get('provider_options'))
|
||||
providers = kwargs.get('providers', get_default_providers())
|
||||
provider_options = kwargs.get('provider_options', get_default_provider_options())
|
||||
model = router.get_model(providers=providers, provider_options=provider_options)
|
||||
return model
|
||||
|
||||
|
||||
@@ -2,76 +2,35 @@ import cv2
|
||||
import numpy as np
|
||||
from skimage import transform as trans
|
||||
|
||||
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
|
||||
[51.157, 89.050], [57.025, 89.702]],
|
||||
dtype=np.float32)
|
||||
#<--left
|
||||
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
|
||||
[45.177, 86.190], [64.246, 86.758]],
|
||||
dtype=np.float32)
|
||||
|
||||
#---frontal
|
||||
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
|
||||
[42.463, 87.010], [69.537, 87.010]],
|
||||
dtype=np.float32)
|
||||
|
||||
#-->right
|
||||
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
|
||||
[48.167, 86.758], [67.236, 86.190]],
|
||||
dtype=np.float32)
|
||||
|
||||
#-->right profile
|
||||
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
|
||||
[55.388, 89.702], [61.257, 89.050]],
|
||||
dtype=np.float32)
|
||||
|
||||
src = np.array([src1, src2, src3, src4, src5])
|
||||
src_map = {112: src, 224: src * 2}
|
||||
|
||||
arcface_src = np.array(
|
||||
arcface_dst = np.array(
|
||||
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
|
||||
[41.5493, 92.3655], [70.7299, 92.2041]],
|
||||
dtype=np.float32)
|
||||
|
||||
arcface_src = np.expand_dims(arcface_src, axis=0)
|
||||
|
||||
# In[66]:
|
||||
|
||||
|
||||
# lmk is prediction; src is template
|
||||
def estimate_norm(lmk, image_size=112, mode='arcface'):
|
||||
def estimate_norm(lmk, image_size=112,mode='arcface'):
|
||||
assert lmk.shape == (5, 2)
|
||||
tform = trans.SimilarityTransform()
|
||||
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
|
||||
min_M = []
|
||||
min_index = []
|
||||
min_error = float('inf')
|
||||
if mode == 'arcface':
|
||||
if image_size == 112:
|
||||
src = arcface_src
|
||||
else:
|
||||
src = float(image_size) / 112 * arcface_src
|
||||
assert image_size%112==0 or image_size%128==0
|
||||
if image_size%112==0:
|
||||
ratio = float(image_size)/112.0
|
||||
else:
|
||||
src = src_map[image_size]
|
||||
for i in np.arange(src.shape[0]):
|
||||
tform.estimate(lmk, src[i])
|
||||
M = tform.params[0:2, :]
|
||||
results = np.dot(M, lmk_tran.T)
|
||||
results = results.T
|
||||
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
|
||||
# print(error)
|
||||
if error < min_error:
|
||||
min_error = error
|
||||
min_M = M
|
||||
min_index = i
|
||||
return min_M, min_index
|
||||
|
||||
ratio = float(image_size)/128.0
|
||||
dst = arcface_dst * ratio
|
||||
tform = trans.SimilarityTransform()
|
||||
tform.estimate(lmk, dst)
|
||||
M = tform.params[0:2, :]
|
||||
return M
|
||||
|
||||
def norm_crop(img, landmark, image_size=112, mode='arcface'):
|
||||
M, pose_index = estimate_norm(landmark, image_size, mode)
|
||||
M = estimate_norm(landmark, image_size, mode)
|
||||
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
||||
return warped
|
||||
|
||||
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
|
||||
M = estimate_norm(landmark, image_size, mode)
|
||||
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
||||
return warped, M
|
||||
|
||||
def square_crop(im, S):
|
||||
if im.shape[0] > im.shape[1]:
|
||||
height = S
|
||||
|
||||
@@ -29,7 +29,7 @@ def download(sub_dir, name, force=False, root='~/.insightface'):
|
||||
def ensure_available(sub_dir, name, root='~/.insightface'):
|
||||
return download(sub_dir, name, force=False, root=root)
|
||||
|
||||
def download_onnx(sub_dir, model_file, force=False, root='~/.insightface'):
|
||||
def download_onnx(sub_dir, model_file, force=False, root='~/.insightface', download_zip=False):
|
||||
_root = os.path.expanduser(root)
|
||||
model_root = osp.join(_root, sub_dir)
|
||||
new_model_file = osp.join(model_root, model_file)
|
||||
@@ -38,9 +38,17 @@ def download_onnx(sub_dir, model_file, force=False, root='~/.insightface'):
|
||||
if not osp.exists(model_root):
|
||||
os.makedirs(model_root)
|
||||
print('download_path:', new_model_file)
|
||||
model_url = "%s/%s/%s"%(BASE_REPO_URL, sub_dir, model_file)
|
||||
#model_url = "%s/%s"%(BASE_REPO_URL, model_file)
|
||||
download_file(model_url,
|
||||
path=new_model_file,
|
||||
overwrite=True)
|
||||
return new_model_file
|
||||
if not download_zip:
|
||||
model_url = "%s/%s/%s"%(BASE_REPO_URL, sub_dir, model_file)
|
||||
download_file(model_url,
|
||||
path=new_model_file,
|
||||
overwrite=True)
|
||||
else:
|
||||
model_url = "%s/%s/%s.zip"%(BASE_REPO_URL, sub_dir, model_file)
|
||||
zip_file_path = new_model_file+".zip"
|
||||
download_file(model_url,
|
||||
path=zip_file_path,
|
||||
overwrite=True)
|
||||
with zipfile.ZipFile(zip_file_path) as zf:
|
||||
zf.extractall(model_root)
|
||||
return new_model_file
|
||||
|
||||
Reference in New Issue
Block a user