mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
Update README.md
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
1. Install `MXNet` with GPU support (Python 2.7).
|
||||
|
||||
```
|
||||
pip install mxnet-cu90
|
||||
pip install mxnet-cu90 #or mxnet-cu100 or mxnet-cu80
|
||||
```
|
||||
|
||||
2. Clone the InsightFace repository. We call the directory insightface as *`INSIGHTFACE_ROOT`*.
|
||||
@@ -28,10 +28,6 @@ The first three files are the training dataset while the last three files are ve
|
||||
|
||||
4. Train deep face recognition models.
|
||||
In this part, we assume you are in the directory *`$INSIGHTFACE_ROOT/recognition/`*.
|
||||
```Shell
|
||||
export MXNET_CPU_WORKER_NTHREADS=24
|
||||
export MXNET_ENGINE_TYPE=ThreadedEnginePerDevice
|
||||
```
|
||||
|
||||
Place and edit config file:
|
||||
```Shell
|
||||
@@ -55,14 +51,14 @@ This model can achieve *LFW 99.80+* and *MegaFace 98.3%+*.
|
||||
CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r50 --loss cosface --dataset emore
|
||||
```
|
||||
|
||||
(3). Train Softmax with LMobileNet-GAP.
|
||||
(3). Train Softmax with MNasNet0.5-GDC.
|
||||
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network m1 --loss softmax --dataset emore
|
||||
CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network mnas05 --loss softmax --dataset emore
|
||||
```
|
||||
|
||||
(4). Fine-turn the above Softmax model with Triplet loss.
|
||||
|
||||
```Shell
|
||||
CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network m1 --loss triplet --lr 0.005 --pretrained ./models/m1-softmax-emore,1
|
||||
CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network mnas05 --loss triplet --lr 0.005 --pretrained ./models/mnas05-softmax-emore,1
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user