add source code of recognition web-demo

This commit is contained in:
Jia Guo
2023-01-01 20:47:19 +08:00
parent 04da49fbbd
commit f8aa2c17e1
4 changed files with 618 additions and 0 deletions

View File

@@ -0,0 +1,91 @@
# -*- coding: utf-8 -*-
# @Organization : insightface.ai
# @Author : Jia Guo
# @Time : 2021-05-04
# @Function :
import numpy as np
import cv2
import onnx
import onnxruntime
import face_align
__all__ = [
'ArcFaceONNX',
]
class ArcFaceONNX:
def __init__(self, model_file=None, session=None):
assert model_file is not None
self.model_file = model_file
self.session = session
self.taskname = 'recognition'
find_sub = False
find_mul = False
model = onnx.load(self.model_file)
graph = model.graph
for nid, node in enumerate(graph.node[:8]):
#print(nid, node.name)
if node.name.startswith('Sub') or node.name.startswith('_minus'):
find_sub = True
if node.name.startswith('Mul') or node.name.startswith('_mul'):
find_mul = True
if find_sub and find_mul:
#mxnet arcface model
input_mean = 0.0
input_std = 1.0
else:
input_mean = 127.5
input_std = 127.5
self.input_mean = input_mean
self.input_std = input_std
#print('input mean and std:', self.input_mean, self.input_std)
if self.session is None:
self.session = onnxruntime.InferenceSession(self.model_file, providers=['CUDAExecutionProvider'])
input_cfg = self.session.get_inputs()[0]
input_shape = input_cfg.shape
input_name = input_cfg.name
self.input_size = tuple(input_shape[2:4][::-1])
self.input_shape = input_shape
outputs = self.session.get_outputs()
output_names = []
for out in outputs:
output_names.append(out.name)
self.input_name = input_name
self.output_names = output_names
assert len(self.output_names)==1
self.output_shape = outputs[0].shape
def prepare(self, ctx_id, **kwargs):
if ctx_id<0:
self.session.set_providers(['CPUExecutionProvider'])
def get(self, img, kps):
aimg = face_align.norm_crop(img, landmark=kps, image_size=self.input_size[0])
embedding = self.get_feat(aimg).flatten()
return embedding
def compute_sim(self, feat1, feat2):
from numpy.linalg import norm
feat1 = feat1.ravel()
feat2 = feat2.ravel()
sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2))
return sim
def get_feat(self, imgs):
if not isinstance(imgs, list):
imgs = [imgs]
input_size = self.input_size
blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size,
(self.input_mean, self.input_mean, self.input_mean), swapRB=True)
net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
return net_out
def forward(self, batch_data):
blob = (batch_data - self.input_mean) / self.input_std
net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
return net_out

View File

@@ -0,0 +1,141 @@
import cv2
import numpy as np
from skimage import transform as trans
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
[51.157, 89.050], [57.025, 89.702]],
dtype=np.float32)
#<--left
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
[45.177, 86.190], [64.246, 86.758]],
dtype=np.float32)
#---frontal
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
[42.463, 87.010], [69.537, 87.010]],
dtype=np.float32)
#-->right
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
[48.167, 86.758], [67.236, 86.190]],
dtype=np.float32)
#-->right profile
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
[55.388, 89.702], [61.257, 89.050]],
dtype=np.float32)
src = np.array([src1, src2, src3, src4, src5])
src_map = {112: src, 224: src * 2}
arcface_src = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
arcface_src = np.expand_dims(arcface_src, axis=0)
# In[66]:
# lmk is prediction; src is template
def estimate_norm(lmk, image_size=112, mode='arcface'):
assert lmk.shape == (5, 2)
tform = trans.SimilarityTransform()
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
min_M = []
min_index = []
min_error = float('inf')
if mode == 'arcface':
if image_size == 112:
src = arcface_src
else:
src = float(image_size) / 112 * arcface_src
else:
src = src_map[image_size]
for i in np.arange(src.shape[0]):
tform.estimate(lmk, src[i])
M = tform.params[0:2, :]
results = np.dot(M, lmk_tran.T)
results = results.T
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
# print(error)
if error < min_error:
min_error = error
min_M = M
min_index = i
return min_M, min_index
def norm_crop(img, landmark, image_size=112, mode='arcface'):
M, pose_index = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
return warped
def square_crop(im, S):
if im.shape[0] > im.shape[1]:
height = S
width = int(float(im.shape[1]) / im.shape[0] * S)
scale = float(S) / im.shape[0]
else:
width = S
height = int(float(im.shape[0]) / im.shape[1] * S)
scale = float(S) / im.shape[1]
resized_im = cv2.resize(im, (width, height))
det_im = np.zeros((S, S, 3), dtype=np.uint8)
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
return det_im, scale
def transform(data, center, output_size, scale, rotation):
scale_ratio = scale
rot = float(rotation) * np.pi / 180.0
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
t1 = trans.SimilarityTransform(scale=scale_ratio)
cx = center[0] * scale_ratio
cy = center[1] * scale_ratio
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
t3 = trans.SimilarityTransform(rotation=rot)
t4 = trans.SimilarityTransform(translation=(output_size / 2,
output_size / 2))
t = t1 + t2 + t3 + t4
M = t.params[0:2]
cropped = cv2.warpAffine(data,
M, (output_size, output_size),
borderValue=0.0)
return cropped, M
def trans_points2d(pts, M):
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i] = new_pt[0:2]
return new_pts
def trans_points3d(pts, M):
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
#print(scale)
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i][0:2] = new_pt[0:2]
new_pts[i][2] = pts[i][2] * scale
return new_pts
def trans_points(pts, M):
if pts.shape[1] == 2:
return trans_points2d(pts, M)
else:
return trans_points3d(pts, M)

View File

@@ -0,0 +1,57 @@
#!/usr/bin/env python
import os
import os.path as osp
import argparse
import cv2
import numpy as np
import onnxruntime
from scrfd import SCRFD
from arcface_onnx import ArcFaceONNX
onnxruntime.set_default_logger_severity(3)
assets_dir = osp.expanduser('~/.insightface/models/buffalo_l')
detector = SCRFD(os.path.join(assets_dir, 'det_10g.onnx'))
detector.prepare(0)
model_path = os.path.join(assets_dir, 'w600k_r50.onnx')
rec = ArcFaceONNX(model_path)
rec.prepare(0)
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('img1', type=str)
parser.add_argument('img2', type=str)
return parser.parse_args()
def func(args):
image1 = cv2.imread(args.img1)
image2 = cv2.imread(args.img2)
bboxes1, kpss1 = detector.autodetect(image1, max_num=1)
if bboxes1.shape[0]==0:
return -1.0, "Face not found in Image-1"
bboxes2, kpss2 = detector.autodetect(image2, max_num=1)
if bboxes2.shape[0]==0:
return -1.0, "Face not found in Image-2"
kps1 = kpss1[0]
kps2 = kpss2[0]
feat1 = rec.get(image1, kps1)
feat2 = rec.get(image2, kps2)
sim = rec.compute_sim(feat1, feat2)
if sim<0.2:
conclu = 'They are NOT the same person'
elif sim>=0.2 and sim<0.28:
conclu = 'They are LIKELY TO be the same person'
else:
conclu = 'They ARE the same person'
return sim, conclu
if __name__ == '__main__':
args = parse_args()
output = func(args)
print('sim: %.4f, message: %s'%(output[0], output[1]))

View File

@@ -0,0 +1,329 @@
from __future__ import division
import datetime
import numpy as np
#import onnx
import onnxruntime
import os
import os.path as osp
import cv2
import sys
def softmax(z):
assert len(z.shape) == 2
s = np.max(z, axis=1)
s = s[:, np.newaxis] # necessary step to do broadcasting
e_x = np.exp(z - s)
div = np.sum(e_x, axis=1)
div = div[:, np.newaxis] # dito
return e_x / div
def distance2bbox(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = x1.clamp(min=0, max=max_shape[1])
y1 = y1.clamp(min=0, max=max_shape[0])
x2 = x2.clamp(min=0, max=max_shape[1])
y2 = y2.clamp(min=0, max=max_shape[0])
return np.stack([x1, y1, x2, y2], axis=-1)
def distance2kps(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
preds = []
for i in range(0, distance.shape[1], 2):
px = points[:, i%2] + distance[:, i]
py = points[:, i%2+1] + distance[:, i+1]
if max_shape is not None:
px = px.clamp(min=0, max=max_shape[1])
py = py.clamp(min=0, max=max_shape[0])
preds.append(px)
preds.append(py)
return np.stack(preds, axis=-1)
class SCRFD:
def __init__(self, model_file=None, session=None):
import onnxruntime
self.model_file = model_file
self.session = session
self.taskname = 'detection'
self.batched = False
if self.session is None:
assert self.model_file is not None
assert osp.exists(self.model_file)
self.session = onnxruntime.InferenceSession(self.model_file, providers=['CUDAExecutionProvider'])
self.center_cache = {}
self.nms_thresh = 0.4
self.det_thresh = 0.5
self._init_vars()
def _init_vars(self):
input_cfg = self.session.get_inputs()[0]
input_shape = input_cfg.shape
#print(input_shape)
if isinstance(input_shape[2], str):
self.input_size = None
else:
self.input_size = tuple(input_shape[2:4][::-1])
#print('image_size:', self.image_size)
input_name = input_cfg.name
self.input_shape = input_shape
outputs = self.session.get_outputs()
if len(outputs[0].shape) == 3:
self.batched = True
output_names = []
for o in outputs:
output_names.append(o.name)
self.input_name = input_name
self.output_names = output_names
self.input_mean = 127.5
self.input_std = 128.0
#print(self.output_names)
#assert len(outputs)==10 or len(outputs)==15
self.use_kps = False
self._anchor_ratio = 1.0
self._num_anchors = 1
if len(outputs)==6:
self.fmc = 3
self._feat_stride_fpn = [8, 16, 32]
self._num_anchors = 2
elif len(outputs)==9:
self.fmc = 3
self._feat_stride_fpn = [8, 16, 32]
self._num_anchors = 2
self.use_kps = True
elif len(outputs)==10:
self.fmc = 5
self._feat_stride_fpn = [8, 16, 32, 64, 128]
self._num_anchors = 1
elif len(outputs)==15:
self.fmc = 5
self._feat_stride_fpn = [8, 16, 32, 64, 128]
self._num_anchors = 1
self.use_kps = True
def prepare(self, ctx_id, **kwargs):
if ctx_id<0:
self.session.set_providers(['CPUExecutionProvider'])
nms_thresh = kwargs.get('nms_thresh', None)
if nms_thresh is not None:
self.nms_thresh = nms_thresh
det_thresh = kwargs.get('det_thresh', None)
if det_thresh is not None:
self.det_thresh = det_thresh
input_size = kwargs.get('input_size', None)
if input_size is not None:
if self.input_size is not None:
print('warning: det_size is already set in scrfd model, ignore')
else:
self.input_size = input_size
def forward(self, img, threshold):
scores_list = []
bboxes_list = []
kpss_list = []
input_size = tuple(img.shape[0:2][::-1])
blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
net_outs = self.session.run(self.output_names, {self.input_name : blob})
input_height = blob.shape[2]
input_width = blob.shape[3]
fmc = self.fmc
for idx, stride in enumerate(self._feat_stride_fpn):
# If model support batch dim, take first output
if self.batched:
scores = net_outs[idx][0]
bbox_preds = net_outs[idx + fmc][0]
bbox_preds = bbox_preds * stride
if self.use_kps:
kps_preds = net_outs[idx + fmc * 2][0] * stride
# If model doesn't support batching take output as is
else:
scores = net_outs[idx]
bbox_preds = net_outs[idx + fmc]
bbox_preds = bbox_preds * stride
if self.use_kps:
kps_preds = net_outs[idx + fmc * 2] * stride
height = input_height // stride
width = input_width // stride
K = height * width
key = (height, width, stride)
if key in self.center_cache:
anchor_centers = self.center_cache[key]
else:
#solution-1, c style:
#anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
#for i in range(height):
# anchor_centers[i, :, 1] = i
#for i in range(width):
# anchor_centers[:, i, 0] = i
#solution-2:
#ax = np.arange(width, dtype=np.float32)
#ay = np.arange(height, dtype=np.float32)
#xv, yv = np.meshgrid(np.arange(width), np.arange(height))
#anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
#solution-3:
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
#print(anchor_centers.shape)
anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
if self._num_anchors>1:
anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
if len(self.center_cache)<100:
self.center_cache[key] = anchor_centers
pos_inds = np.where(scores>=threshold)[0]
bboxes = distance2bbox(anchor_centers, bbox_preds)
pos_scores = scores[pos_inds]
pos_bboxes = bboxes[pos_inds]
scores_list.append(pos_scores)
bboxes_list.append(pos_bboxes)
if self.use_kps:
kpss = distance2kps(anchor_centers, kps_preds)
#kpss = kps_preds
kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
pos_kpss = kpss[pos_inds]
kpss_list.append(pos_kpss)
return scores_list, bboxes_list, kpss_list
def detect(self, img, input_size = None, thresh=None, max_num=0, metric='default'):
assert input_size is not None or self.input_size is not None
input_size = self.input_size if input_size is None else input_size
im_ratio = float(img.shape[0]) / img.shape[1]
model_ratio = float(input_size[1]) / input_size[0]
if im_ratio>model_ratio:
new_height = input_size[1]
new_width = int(new_height / im_ratio)
else:
new_width = input_size[0]
new_height = int(new_width * im_ratio)
det_scale = float(new_height) / img.shape[0]
resized_img = cv2.resize(img, (new_width, new_height))
det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 )
det_img[:new_height, :new_width, :] = resized_img
det_thresh = thresh if thresh is not None else self.det_thresh
scores_list, bboxes_list, kpss_list = self.forward(det_img, det_thresh)
scores = np.vstack(scores_list)
scores_ravel = scores.ravel()
order = scores_ravel.argsort()[::-1]
bboxes = np.vstack(bboxes_list) / det_scale
if self.use_kps:
kpss = np.vstack(kpss_list) / det_scale
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
pre_det = pre_det[order, :]
keep = self.nms(pre_det)
det = pre_det[keep, :]
if self.use_kps:
kpss = kpss[order,:,:]
kpss = kpss[keep,:,:]
else:
kpss = None
if max_num > 0 and det.shape[0] > max_num:
area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
det[:, 1])
img_center = img.shape[0] // 2, img.shape[1] // 2
offsets = np.vstack([
(det[:, 0] + det[:, 2]) / 2 - img_center[1],
(det[:, 1] + det[:, 3]) / 2 - img_center[0]
])
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
if metric=='max':
values = area
else:
values = area - offset_dist_squared * 2.0 # some extra weight on the centering
bindex = np.argsort(
values)[::-1] # some extra weight on the centering
bindex = bindex[0:max_num]
det = det[bindex, :]
if kpss is not None:
kpss = kpss[bindex, :]
return det, kpss
def autodetect(self, img, max_num=0, metric='max'):
bboxes, kpss = self.detect(img, input_size=(640, 640), thresh=0.5)
bboxes2, kpss2 = self.detect(img, input_size=(128, 128), thresh=0.5)
bboxes_all = np.concatenate([bboxes, bboxes2], axis=0)
kpss_all = np.concatenate([kpss, kpss2], axis=0)
keep = self.nms(bboxes_all)
det = bboxes_all[keep,:]
kpss = kpss_all[keep,:]
if max_num > 0 and det.shape[0] > max_num:
area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
det[:, 1])
img_center = img.shape[0] // 2, img.shape[1] // 2
offsets = np.vstack([
(det[:, 0] + det[:, 2]) / 2 - img_center[1],
(det[:, 1] + det[:, 3]) / 2 - img_center[0]
])
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
if metric=='max':
values = area
else:
values = area - offset_dist_squared * 2.0 # some extra weight on the centering
bindex = np.argsort(
values)[::-1] # some extra weight on the centering
bindex = bindex[0:max_num]
det = det[bindex, :]
if kpss is not None:
kpss = kpss[bindex, :]
return det, kpss
def nms(self, dets):
thresh = self.nms_thresh
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep