import os import cv2 import inspireface as ifac from inspireface.param import * import click import numpy as np race_tags = ["Black", "Asian", "Latino/Hispanic", "Middle Eastern", "White"] gender_tags = ["Female", "Male", ] age_bracket_tags = ["0-2 years old", "3-9 years old", "10-19 years old", "20-29 years old", "30-39 years old", "40-49 years old", "50-59 years old", "60-69 years old", "more than 70 years old"] @click.command() @click.argument("resource_path") @click.argument('image_path') def case_face_detection_image(resource_path, image_path): """ This is a sample application for face detection and tracking using an image. It also includes pipeline extensions such as RGB liveness, mask detection, and face quality evaluation. """ # Step 1: Initialize the SDK and load the algorithm resource files. ret = ifac.launch(resource_path) assert ret, "Launch failure. Please ensure the resource path is correct." # Optional features, loaded during session creation based on the modules specified. opt = HF_ENABLE_FACE_RECOGNITION | HF_ENABLE_QUALITY | HF_ENABLE_MASK_DETECT | HF_ENABLE_LIVENESS | HF_ENABLE_INTERACTION | HF_ENABLE_FACE_ATTRIBUTE session = ifac.InspireFaceSession(opt, HF_DETECT_MODE_ALWAYS_DETECT) # Set detection confidence threshold session.set_detection_confidence_threshold(0.5) # Load the image using OpenCV. image = cv2.imread(image_path) assert image is not None, "Please check that the image path is correct." # Perform face detection on the image. faces = session.face_detection(image) print(f"face detection: {len(faces)} found") # Copy the image for drawing the bounding boxes. draw = image.copy() for idx, face in enumerate(faces): print(f"{'==' * 20}") print(f"idx: {idx}") print(f"detection confidence: {face.detection_confidence}") # Print Euler angles of the face. print(f"roll: {face.roll}, yaw: {face.yaw}, pitch: {face.pitch}") # Get face bounding box x1, y1, x2, y2 = face.location # Calculate center, size, and angle center = ((x1 + x2) / 2, (y1 + y2) / 2) size = (x2 - x1, y2 - y1) angle = face.roll # Apply rotation to the bounding box corners rect = ((center[0], center[1]), (size[0], size[1]), angle) box = cv2.boxPoints(rect) box = box.astype(int) # Draw the rotated bounding box cv2.drawContours(draw, [box], 0, (100, 180, 29), 2) # Draw landmarks lmk = session.get_face_dense_landmark(face) for x, y in lmk.astype(int): cv2.circle(draw, (x, y), 0, (220, 100, 0), 2) # Features must be enabled during session creation to use them here. select_exec_func = HF_ENABLE_QUALITY | HF_ENABLE_MASK_DETECT | HF_ENABLE_LIVENESS | HF_ENABLE_INTERACTION | HF_ENABLE_FACE_ATTRIBUTE # Execute the pipeline to obtain richer face information. extends = session.face_pipeline(image, faces, select_exec_func) for idx, ext in enumerate(extends): print(f"{'==' * 20}") print(f"idx: {idx}") # For these pipeline results, you can set thresholds based on the specific scenario to make judgments. print(f"quality: {ext.quality_confidence}") print(f"rgb liveness: {ext.rgb_liveness_confidence}") print(f"face mask: {ext.mask_confidence}") print( f"face eyes status: left eye: {ext.left_eye_status_confidence} right eye: {ext.right_eye_status_confidence}") print(f"gender: {gender_tags[ext.gender]}") print(f"race: {race_tags[ext.race]}") print(f"age: {age_bracket_tags[ext.age_bracket]}") # Save the annotated image to the 'tmp/' directory. save_path = os.path.join("tmp/", "det.jpg") cv2.imwrite(save_path, draw) print(f"\nSave annotated image to {save_path}") if __name__ == '__main__': os.makedirs("tmp", exist_ok=True) case_face_detection_image()