import face_model import argparse import cv2 import sys import numpy as np import datetime parser = argparse.ArgumentParser(description='face model test') # general parser.add_argument('--image-size', default='112,112', help='') parser.add_argument('--image', default='Tom_Hanks_54745.png', help='') parser.add_argument('--model', default='model/model,0', help='path to load model.') parser.add_argument('--gpu', default=0, type=int, help='gpu id') parser.add_argument( '--det', default=0, type=int, help='mtcnn option, 1 means using R+O, 0 means detect from begining') args = parser.parse_args() model = face_model.FaceModel(args) #img = cv2.imread('Tom_Hanks_54745.png') img = cv2.imread(args.image) img = model.get_input(img) #f1 = model.get_feature(img) #print(f1[0:10]) for _ in range(5): gender, age = model.get_ga(img) time_now = datetime.datetime.now() count = 200 for _ in range(count): gender, age = model.get_ga(img) time_now2 = datetime.datetime.now() diff = time_now2 - time_now print('time cost', diff.total_seconds() / count) print('gender is', gender) print('age is', age)