/** * Created by Jingyu Yan * @date 2024-10-01 */ #include #include "opencv2/opencv.hpp" #include "log.h" #include "inspireface/feature_hub/simd.h" // #include using namespace inspire; int main() { int N = 512; int vectorSize = 512; // Vector length { // Create an Nx512 matrix of type CV_32F and fill it with random numbers cv::Mat mat(N, vectorSize, CV_32F); cv::randu(mat, cv::Scalar(0), cv::Scalar(1)); // Create a 512x1 CV_32F matrix and fill it with random numbers cv::Mat one(vectorSize, 1, CV_32F); cv::randu(one, cv::Scalar(0), cv::Scalar(1)); std::cout << mat.size << std::endl; std::cout << one.size << std::endl; auto timeStart = (double)cv::getTickCount(); cv::Mat cosineSimilarities; cv::gemm(mat, one, 1, cv::Mat(), 0, cosineSimilarities); double cost = ((double)cv::getTickCount() - timeStart) / cv::getTickFrequency() * 1000; INSPIRE_LOGD("Matrix COST: %f", cost); } { std::srand(static_cast(std::time(nullptr))); std::vector> matrix(N, std::vector(vectorSize)); for (int i = 0; i < N; ++i) { for (int j = 0; j < vectorSize; ++j) { matrix[i][j] = static_cast(std::rand()) / RAND_MAX; } } std::vector vectorOne(vectorSize); for (int i = 0; i < vectorSize; ++i) { vectorOne[i] = static_cast(std::rand()) / RAND_MAX; } auto timeStart = (double)cv::getTickCount(); // dot for (const auto &v : matrix) { simd_dot(v.data(), vectorOne.data(), vectorSize); } double cost = ((double)cv::getTickCount() - timeStart) / cv::getTickFrequency() * 1000; INSPIRE_LOGD("Vector COST: %f", cost); } // { // Eigen::initParallel(); // Eigen::MatrixXf mat(N, vectorSize); // mat = Eigen::MatrixXf::Random(N, vectorSize); // // std::cout << mat.rows() << " x " << mat.cols() << std::endl; // // // Eigen::VectorXf one(vectorSize); // one = Eigen::VectorXf::Random(vectorSize); // // auto timeStart = (double) cv::getTickCount(); // Eigen::VectorXf result = mat * one; // // double cost = ((double) cv::getTickCount() - timeStart) / cv::getTickFrequency() * 1000; // LOGD("Eigen COST: %f", cost); // } return 0; }