# InsightFace Python Library ## License The code of InsightFace Python Library is released under the MIT License. There is no limitation for both academic and commercial usage. **The pretrained models we provided with this library are available for non-commercial research purposes only, including both auto-downloading models and manual-downloading models.** ## Install ``` pip install -U insightface ``` ## Change Log ### [0.6] - 2022-01-29 #### Added - Add pose estimation in face-analysis app. #### Changed - Change model automated downloading url, to ucloud. ## Quick Example ``` import cv2 import numpy as np import insightface from insightface.app import FaceAnalysis from insightface.data import get_image as ins_get_image app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) img = ins_get_image('t1') faces = app.get(img) rimg = app.draw_on(img, faces) cv2.imwrite("./t1_output.jpg", rimg) ``` This quick example will detect faces from the ``t1.jpg`` image and draw detection results on it. ## Inference Backend For ``insightface<=0.1.5``, we use MXNet as inference backend. (You may please download all models from [onedrive](https://1drv.ms/u/s!AswpsDO2toNKrUy0VktHTWgIQ0bn?e=UEF7C4), and put them all under `~/.insightface/models/` directory to use this old version) Starting from insightface>=0.2, we use onnxruntime as inference backend. (You have to install ``onnxruntime-gpu`` to enable GPU inference) ## Model Zoo In the latest version of insightface library, we provide following model packs: Name in **bold** is the default model pack. | Name | Detection Model | Recognition Model | Alignment | Attributes | Model-Size | | -------------- | --------------- | ------------------- | ------------ | ---------- | ---------- | | antelopev2 | SCRFD-10GF | ResNet100@Glint360K | 2d106 & 3d68 | Gender&Age | 407MB | | **buffalo_l** | SCRFD-10GF | ResNet50@WebFace600K | 2d106 & 3d68 | Gender&Age | 326MB | | buffalo_m | SCRFD-2.5GF | ResNet50@WebFace600K | 2d106 & 3d68 | Gender&Age | 313MB | | buffalo_s | SCRFD-500MF | MBF@WebFace600K | 2d106 & 3d68 | Gender&Age | 159MB | | buffalo_sc | SCRFD-500MF | MBF@WebFace600K | - | - | 16MB | Recognition Accuracy: | Name | MR-ALL | African | Caucasian | South Asian | East Asian | LFW | CFP-FP | AgeDB-30 | IJB-C(E4) | | :-------- | ------ | ------- | --------- | ----------- | ---------- | ----- | ------ | -------- | --------- | | buffalo_l | 91.25 | 90.29 | 94.70 | 93.16 | 74.96 | 99.83 | 99.33 | 98.23 | 97.25 | | buffalo_s | 71.87 | 69.45 | 80.45 | 73.39 | 51.03 | 99.70 | 98.00 | 96.58 | 95.02 | *buffalo_m has the same accuracy with buffalo_l.* *buffalo_sc has the same accuracy with buffalo_s.* **Note that these models are available for non-commercial research purposes only.** For insightface>=0.3.3, models will be downloaded automatically once we init ``app = FaceAnalysis()`` instance. For insightface==0.3.2, you must first download the model package by command: ``` insightface-cli model.download antelope ``` or ``` insightface-cli model.download antelopev2 ``` ## Use Your Own Licensed Model You can simply create a new model directory under ``~/.insightface/models/`` and replace the pretrained models we provide with your own models. And then call ``app = FaceAnalysis(name='your_model_zoo')`` to load these models. ## Call Models The latest insightface libary only supports onnx models. Once you have trained detection or recognition models by PyTorch, MXNet or any other frameworks, you can convert it to the onnx format and then they can be called with insightface library. ### Call Detection Models ``` import cv2 import numpy as np import insightface from insightface.app import FaceAnalysis from insightface.data import get_image as ins_get_image # Method-1, use FaceAnalysis app = FaceAnalysis(allowed_modules=['detection']) # enable detection model only app.prepare(ctx_id=0, det_size=(640, 640)) # Method-2, load model directly detector = insightface.model_zoo.get_model('your_detection_model.onnx') detector.prepare(ctx_id=0, det_size=(640, 640)) ``` ### Call Recognition Models ``` import cv2 import numpy as np import insightface from insightface.app import FaceAnalysis from insightface.data import get_image as ins_get_image handler = insightface.model_zoo.get_model('your_recognition_model.onnx') handler.prepare(ctx_id=0) ```