Files
2025-03-25 00:51:26 +08:00

280 lines
9.3 KiB
Python

from test.test_settings import *
import inspireface as ifac
from inspireface.param import *
import numpy as np
import time
from functools import wraps
import cv2
from itertools import cycle
from tqdm import tqdm
from unittest import skipUnless as optional
def title(name: str = None):
print("--" * 35)
print(f" InspireFace Version: {ifac.__version__}")
if name is not None:
print(f" {name}")
print("--" * 35)
def get_test_data(path: str) -> str:
return os.path.join(PYTHON_TEST_DATA_FOLDER, path)
def calculate_overlap(box1, box2):
"""
Calculate the overlap ratio between two rectangular boxes.
Parameters:
- box1: The first rectangle, format ((x1, y1), (x2, y2)), where (x1, y1) is the top left coordinate, and (x2, y2) is the bottom right coordinate.
- box2: The second rectangle, format the same as box1.
Returns:
- The overlap ratio, 0 if the rectangles do not overlap.
"""
# Unpack rectangle coordinates
x1_box1, y1_box1, x2_box1, y2_box1 = box1
x1_box2, y1_box2, x2_box2, y2_box2 = box2
# Calculate the coordinates of the intersection rectangle
x_overlap = max(0, min(x2_box1, x2_box2) - max(x1_box1, x1_box2))
y_overlap = max(0, min(y2_box1, y2_box2) - max(y1_box1, y1_box2))
# Calculate the area of the intersection
overlap_area = x_overlap * y_overlap
# Calculate the area of each rectangle
box1_area = (x2_box1 - x1_box1) * (y2_box1 - y1_box1)
box2_area = (x2_box2 - x1_box2) * (y2_box2 - y1_box2)
# Calculate the total area
total_area = box1_area + box2_area - overlap_area
# Calculate the overlap ratio
overlap_ratio = overlap_area / total_area if total_area > 0 else 0
return overlap_ratio
def restore_rotated_box(original_width, original_height, box, rotation):
"""
Restore the coordinates of a rotated face box based on the original image width, height, and rotation angle.
Parameters:
- original_width: The width of the original image.
- original_height: The height of the original image.
- box: The coordinates of the rotated box, format ((x1, y1), (x2, y2)).
- rotation: The rotation angle, represented by 0, 1, 2, 3 for 0, 90, 180, 270 degrees respectively.
Returns:
- The restored box coordinates, format same as box.
"""
# For 90 or 270 degrees rotation, the image width and height are swapped
if rotation == 1 or rotation == 3:
width, height = original_height, original_width
else:
width, height = original_width, original_height
(x1, y1, x2, y2) = box
if rotation == 0: # No transformation needed for 0 degrees
restored_box = box
elif rotation == 1: # 90 degrees rotation
restored_box = (y1, width - x2, y2, width - x1)
elif rotation == 2: # 180 degrees rotation
restored_box = (width - x2, height - y2, width - x1, height - y1)
elif rotation == 3: # 270 degrees rotation
restored_box = (height - y2, x1, height - y1, x2)
else:
raise ValueError("Rotation must be 0, 1, 2, or 3 representing 0, 90, 180, 270 degrees.")
return restored_box
def read_binary_file_to_ndarray(file_path, width, height):
nv21_size = width * height * 3 // 2 # NV21 size calculation
try:
with open(file_path, 'rb') as file:
file_data = file.read() # Read the entire file
if len(file_data) != nv21_size:
print(f"Expected file size is {nv21_size}, but got {len(file_data)}")
return None
# Assuming the file data is a complete NV21 frame
data = np.frombuffer(file_data, dtype=np.uint8)
return data
except FileNotFoundError:
print(f"File '{file_path}' not found.")
return None
except Exception as e:
print(f"An error occurred while reading the file: {str(e)}")
return None
def print_benchmark_table(benchmark_results):
print("\n")
header_format = "{:<20} | {:<10} | {:<15} | {:<15}"
row_format = "{:<20} | {:<10} | {:>10.2f} ms | {:>10.4f} ms"
print(header_format.format('Benchmark', 'Loops', 'Total Time', 'Avg Time'))
print("-" * 70)
for name, loops, total_time in benchmark_results:
avg_time = total_time / loops
print(row_format.format(name, loops, total_time * 1000, avg_time * 1000))
def benchmark(test_name, loop):
def benchmark_decorator(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
# Set the loop property on the test object
setattr(self, 'loop', loop)
start_time = time.time()
try:
result = func(self, *args, **kwargs)
finally:
end_time = time.time()
cost_total = end_time - start_time
self.__class__.benchmark_results.append((test_name, loop, cost_total))
# After the test is complete, delete the loop property to prevent other tests from being affected
delattr(self, 'loop')
return result
return wrapper
return benchmark_decorator
def read_video_generator(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise IOError(f"Cannot open video {video_path}")
while True:
ret, frame = cap.read()
if not ret:
break
yield frame
cap.release()
def lfw_generator(directory_path):
while True:
for root, dirs, files in os.walk(directory_path):
for file_name in files:
# Be sure to only process JPG images that end in '0001.jpg'
if file_name.endswith('0001.jpg'):
# Extract the name of the person as the last part of the directory name
name = os.path.basename(root)
image_path = os.path.join(root, file_name)
image = cv2.imread(image_path)
assert image is not None, "Error of image data."
yield image, name
def batch_import_lfw_faces(lfw_path, engine: ifac.InspireFaceSession, num_of_faces: int):
generator = lfw_generator(lfw_path)
registered_faces = 0
# With the tqdm wrapper generator, unknown totals are used with total=None, and tqdm will run in unknown total mode
for image, name in tqdm(generator, total=num_of_faces, desc="Registering faces"):
faces_info = engine.face_detection(image)
if len(faces_info) == 0:
continue
# Extract features from the first face detected
first_face_info = faces_info[0]
feature = engine.face_feature_extract(image, first_face_info)
# The extracted features are used for face registration
if feature is not None:
face_identity = ifac.FaceIdentity(data=feature, tag=name, custom_id=registered_faces)
ifac.feature_hub_face_insert(face_identity)
registered_faces += 1
if registered_faces >= num_of_faces:
break
print(f"Completed. Total faces registered: {registered_faces}")
class QuickComparison(object):
def __init__(self):
param = ifac.SessionCustomParameter()
param.enable_recognition = True
self.engine = ifac.InspireFaceSession(param)
self.faces_set_1 = None
self.faces_set_2 = None
def setup(self, image1: np.ndarray, image2: np.ndarray) -> bool:
images = [image1, image2]
self.faces_set_1 = list()
self.faces_set_2 = list()
for idx, img in enumerate(images):
results = self.engine.face_detection(img)
vector_list = list()
if len(results) > 0:
for info in results:
feature = self.engine.face_feature_extract(img, info)
vector_list.append(feature)
else:
return False
if idx == 0:
self.faces_set_1 = vector_list
else:
self.faces_set_2 = vector_list
return True
def comp(self) -> float:
"""
Cross-compare one by one, keep the value with the highest score and return it, calling self.recognition.face_comparison1v1(info1, info2)
:return: Maximum matching score
"""
max_score = 0.0
# Each face in faces_set_1 is traversed and compared with each face in faces_set_2
for face1 in self.faces_set_1:
for face2 in self.faces_set_2:
score = ifac.feature_comparison(face1, face2)
if score > max_score:
max_score = score
return max_score
def match(self, threshold) -> bool:
return self.comp() > threshold
def find_best_threshold(similarities, labels):
thresholds = np.arange(0, 1, 0.01)
best_threshold = best_accuracy = 0
for threshold in thresholds:
predictions = (similarities > threshold)
accuracy = np.mean((predictions == labels).astype(int))
if accuracy > best_accuracy:
best_accuracy = accuracy
best_threshold = threshold
return best_threshold, best_accuracy
def read_pairs(pairs_filename):
"""Read the pairs.txt file and return a list of image pairs"""
pairs = []
with open(pairs_filename, 'r') as f:
for line in f.readlines()[1:]:
pair = line.strip().split()
pairs.append(pair)
return pairs