Files
2021-06-19 23:37:10 +08:00

213 lines
6.8 KiB
Python

import os
import shutil
import datetime
import sys
from mxnet import ndarray as nd
import mxnet as mx
import random
import argparse
import numbers
import cv2
import time
import pickle
import sklearn
import sklearn.preprocessing
from easydict import EasyDict as edict
import numpy as np
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common'))
from rec_builder import *
def get_embedding(args, imgrec, a, b, image_size, model):
ocontents = []
for idx in range(a, b):
s = imgrec.read_idx(idx)
ocontents.append(s)
embeddings = None
#print(len(ocontents))
ba = 0
rlabel = -1
imgs = []
contents = []
while True:
bb = min(ba + args.batch_size, len(ocontents))
if ba >= bb:
break
_batch_size = bb - ba
#_batch_size2 = max(_batch_size, args.ctx_num)
_batch_size2 = _batch_size
if _batch_size % args.ctx_num != 0:
_batch_size2 = ((_batch_size // args.ctx_num) + 1) * args.ctx_num
data = np.zeros((_batch_size2, 3, image_size[0], image_size[1]))
count = bb - ba
ii = 0
for i in range(ba, bb):
header, img = mx.recordio.unpack(ocontents[i])
contents.append(img)
label = header.label
if not isinstance(label, numbers.Number):
label = label[0]
if rlabel < 0:
rlabel = int(label)
img = mx.image.imdecode(img)
rgb = img.asnumpy()
bgr = rgb[:, :, ::-1]
imgs.append(bgr)
img = rgb.transpose((2, 0, 1))
data[ii] = img
ii += 1
while ii < _batch_size2:
data[ii] = data[0]
ii += 1
nddata = nd.array(data)
db = mx.io.DataBatch(data=(nddata, ))
model.forward(db, is_train=False)
net_out = model.get_outputs()
net_out = net_out[0].asnumpy()
if embeddings is None:
embeddings = np.zeros((len(ocontents), net_out.shape[1]))
embeddings[ba:bb, :] = net_out[0:_batch_size, :]
ba = bb
embeddings = sklearn.preprocessing.normalize(embeddings)
return embeddings, rlabel, contents
def main(args):
print(args)
image_size = (112, 112)
print('image_size', image_size)
vec = args.model.split(',')
prefix = vec[0]
epoch = int(vec[1])
print('loading', prefix, epoch)
ctx = []
cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip()
if len(cvd) > 0:
for i in range(len(cvd.split(','))):
ctx.append(mx.gpu(i))
if len(ctx) == 0:
ctx = [mx.cpu()]
print('use cpu')
else:
print('gpu num:', len(ctx))
args.ctx_num = len(ctx)
args.batch_size *= args.ctx_num
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
W = None
i = 0
while True:
key = 'fc7_%d_weight' % i
i += 1
if key not in arg_params:
break
_W = arg_params[key].asnumpy()
#_W = _W.reshape( (-1, 10, 512) )
if W is None:
W = _W
else:
W = np.concatenate((W, _W), axis=0)
K = args.k
W = sklearn.preprocessing.normalize(W)
W = W.reshape((-1, K, 512))
all_layers = sym.get_internals()
sym = all_layers['fc1_output']
model = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
model.bind(data_shapes=[('data', (args.ctx_num, 3, image_size[0],
image_size[1]))])
model.set_params(arg_params, aux_params)
print('W:', W.shape)
path_imgrec = os.path.join(args.data, 'train.rec')
path_imgidx = os.path.join(args.data, 'train.idx')
imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type
id_list = []
s = imgrec.read_idx(0)
header, _ = mx.recordio.unpack(s)
assert header.flag > 0
print('header0 label', header.label)
header0 = (int(header.label[0]), int(header.label[1]))
#assert(header.flag==1)
imgidx = range(1, int(header.label[0]))
id2range = {}
a, b = int(header.label[0]), int(header.label[1])
seq_identity = range(a, b)
print(len(seq_identity))
image_count = 0
pp = 0
for wid, identity in enumerate(seq_identity):
pp += 1
s = imgrec.read_idx(identity)
header, _ = mx.recordio.unpack(s)
contents = []
a, b = int(header.label[0]), int(header.label[1])
_count = b - a
id_list.append((wid, a, b, _count))
image_count += _count
pp = 0
if not os.path.exists(args.output):
os.makedirs(args.output)
ret = np.zeros((image_count, K + 1), dtype=np.float32)
output_dir = args.output
builder = SeqRecBuilder(output_dir)
print(ret.shape)
imid = 0
da = datetime.datetime.now()
label = 0
num_images = 0
cos_thresh = np.cos(np.pi * args.threshold / 180.0)
for id_item in id_list:
wid = id_item[0]
pp += 1
if pp % 40 == 0:
db = datetime.datetime.now()
print('processing id', pp, (db - da).total_seconds())
da = db
x, _, contents = get_embedding(args, imgrec, id_item[1], id_item[2],
image_size, model)
subcenters = W[wid]
K_stat = np.zeros((K, ), dtype=np.int)
for i in range(x.shape[0]):
_x = x[i]
sim = np.dot(subcenters, _x) # len(sim)==K
mc = np.argmax(sim)
K_stat[mc] += 1
dominant_index = np.argmax(K_stat)
dominant_center = subcenters[dominant_index]
sim = np.dot(x, dominant_center)
idx = np.where(sim > cos_thresh)[0]
num_drop = x.shape[0] - len(idx)
if len(idx) == 0:
continue
#print("labelid %d dropped %d, from %d to %d"% (wid, num_drop, x.shape[0], len(idx)))
num_images += len(idx)
for _idx in idx:
c = contents[_idx]
builder.add(label, c, is_image=False)
label += 1
builder.close()
print('total:', num_images)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
# general
parser.add_argument('--data',
default='/bigdata/faces_ms1m_full',
type=str,
help='')
parser.add_argument('--output',
default='/bigdata/ms1m_full_k3drop075',
type=str,
help='')
parser.add_argument(
'--model',
default=
'../Evaluation/IJB/pretrained_models/r50-arcfacesc-msf-k3z/model,2',
help='path to load model.')
parser.add_argument('--batch-size', default=16, type=int, help='')
parser.add_argument('--threshold', default=75, type=float, help='')
parser.add_argument('--k', default=3, type=int, help='')
args = parser.parse_args()
main(args)