mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
258 lines
9.3 KiB
Python
Executable File
258 lines
9.3 KiB
Python
Executable File
import argparse
|
|
import logging
|
|
import os
|
|
from datetime import datetime
|
|
|
|
import numpy as np
|
|
import torch
|
|
from backbones import get_model
|
|
from dataset import get_dataloader
|
|
from losses import CombinedMarginLoss
|
|
from lr_scheduler import PolynomialLRWarmup
|
|
from partial_fc_v2 import PartialFC_V2
|
|
from torch import distributed
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from utils.utils_callbacks import CallBackLogging, CallBackVerification
|
|
from utils.utils_config import get_config
|
|
from utils.utils_distributed_sampler import setup_seed
|
|
from utils.utils_logging import AverageMeter, init_logging
|
|
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import fp16_compress_hook
|
|
|
|
assert torch.__version__ >= "1.12.0", "In order to enjoy the features of the new torch, \
|
|
we have upgraded the torch to 1.12.0. torch before than 1.12.0 may not work in the future."
|
|
|
|
try:
|
|
rank = int(os.environ["RANK"])
|
|
local_rank = int(os.environ["LOCAL_RANK"])
|
|
world_size = int(os.environ["WORLD_SIZE"])
|
|
distributed.init_process_group("nccl")
|
|
except KeyError:
|
|
rank = 0
|
|
local_rank = 0
|
|
world_size = 1
|
|
distributed.init_process_group(
|
|
backend="nccl",
|
|
init_method="tcp://127.0.0.1:12584",
|
|
rank=rank,
|
|
world_size=world_size,
|
|
)
|
|
|
|
|
|
def main(args):
|
|
|
|
# get config
|
|
cfg = get_config(args.config)
|
|
# global control random seed
|
|
setup_seed(seed=cfg.seed, cuda_deterministic=False)
|
|
|
|
torch.cuda.set_device(local_rank)
|
|
|
|
os.makedirs(cfg.output, exist_ok=True)
|
|
init_logging(rank, cfg.output)
|
|
|
|
summary_writer = (
|
|
SummaryWriter(log_dir=os.path.join(cfg.output, "tensorboard"))
|
|
if rank == 0
|
|
else None
|
|
)
|
|
|
|
wandb_logger = None
|
|
if cfg.using_wandb:
|
|
import wandb
|
|
# Sign in to wandb
|
|
try:
|
|
wandb.login(key=cfg.wandb_key)
|
|
except Exception as e:
|
|
print("WandB Key must be provided in config file (base.py).")
|
|
print(f"Config Error: {e}")
|
|
# Initialize wandb
|
|
run_name = datetime.now().strftime("%y%m%d_%H%M") + f"_GPU{rank}"
|
|
run_name = run_name if cfg.suffix_run_name is None else run_name + f"_{cfg.suffix_run_name}"
|
|
try:
|
|
wandb_logger = wandb.init(
|
|
entity = cfg.wandb_entity,
|
|
project = cfg.wandb_project,
|
|
sync_tensorboard = True,
|
|
resume=cfg.wandb_resume,
|
|
name = run_name,
|
|
notes = cfg.notes) if rank == 0 or cfg.wandb_log_all else None
|
|
if wandb_logger:
|
|
wandb_logger.config.update(cfg)
|
|
except Exception as e:
|
|
print("WandB Data (Entity and Project name) must be provided in config file (base.py).")
|
|
print(f"Config Error: {e}")
|
|
train_loader = get_dataloader(
|
|
cfg.rec,
|
|
local_rank,
|
|
cfg.batch_size,
|
|
cfg.dali,
|
|
cfg.dali_aug,
|
|
cfg.seed,
|
|
cfg.num_workers
|
|
)
|
|
|
|
backbone = get_model(
|
|
cfg.network, dropout=0.0, fp16=cfg.fp16, num_features=cfg.embedding_size).cuda()
|
|
|
|
backbone = torch.nn.parallel.DistributedDataParallel(
|
|
module=backbone, broadcast_buffers=False, device_ids=[local_rank], bucket_cap_mb=16,
|
|
find_unused_parameters=True)
|
|
backbone.register_comm_hook(None, fp16_compress_hook)
|
|
|
|
backbone.train()
|
|
# FIXME using gradient checkpoint if there are some unused parameters will cause error
|
|
backbone._set_static_graph()
|
|
|
|
margin_loss = CombinedMarginLoss(
|
|
64,
|
|
cfg.margin_list[0],
|
|
cfg.margin_list[1],
|
|
cfg.margin_list[2],
|
|
cfg.interclass_filtering_threshold
|
|
)
|
|
|
|
if cfg.optimizer == "sgd":
|
|
module_partial_fc = PartialFC_V2(
|
|
margin_loss, cfg.embedding_size, cfg.num_classes,
|
|
cfg.sample_rate, False)
|
|
module_partial_fc.train().cuda()
|
|
# TODO the params of partial fc must be last in the params list
|
|
opt = torch.optim.SGD(
|
|
params=[{"params": backbone.parameters()}, {"params": module_partial_fc.parameters()}],
|
|
lr=cfg.lr, momentum=0.9, weight_decay=cfg.weight_decay)
|
|
|
|
elif cfg.optimizer == "adamw":
|
|
module_partial_fc = PartialFC_V2(
|
|
margin_loss, cfg.embedding_size, cfg.num_classes,
|
|
cfg.sample_rate, False)
|
|
module_partial_fc.train().cuda()
|
|
opt = torch.optim.AdamW(
|
|
params=[{"params": backbone.parameters()}, {"params": module_partial_fc.parameters()}],
|
|
lr=cfg.lr, weight_decay=cfg.weight_decay)
|
|
else:
|
|
raise
|
|
|
|
cfg.total_batch_size = cfg.batch_size * world_size
|
|
cfg.warmup_step = cfg.num_image // cfg.total_batch_size * cfg.warmup_epoch
|
|
cfg.total_step = cfg.num_image // cfg.total_batch_size * cfg.num_epoch
|
|
|
|
lr_scheduler = PolynomialLRWarmup(
|
|
optimizer=opt,
|
|
warmup_iters=cfg.warmup_step,
|
|
total_iters=cfg.total_step)
|
|
|
|
start_epoch = 0
|
|
global_step = 0
|
|
if cfg.resume:
|
|
dict_checkpoint = torch.load(os.path.join(cfg.output, f"checkpoint_gpu_{rank}.pt"))
|
|
start_epoch = dict_checkpoint["epoch"]
|
|
global_step = dict_checkpoint["global_step"]
|
|
backbone.module.load_state_dict(dict_checkpoint["state_dict_backbone"])
|
|
module_partial_fc.load_state_dict(dict_checkpoint["state_dict_softmax_fc"])
|
|
opt.load_state_dict(dict_checkpoint["state_optimizer"])
|
|
lr_scheduler.load_state_dict(dict_checkpoint["state_lr_scheduler"])
|
|
del dict_checkpoint
|
|
|
|
for key, value in cfg.items():
|
|
num_space = 25 - len(key)
|
|
logging.info(": " + key + " " * num_space + str(value))
|
|
|
|
callback_verification = CallBackVerification(
|
|
val_targets=cfg.val_targets, rec_prefix=cfg.rec,
|
|
summary_writer=summary_writer, wandb_logger = wandb_logger
|
|
)
|
|
callback_logging = CallBackLogging(
|
|
frequent=cfg.frequent,
|
|
total_step=cfg.total_step,
|
|
batch_size=cfg.batch_size,
|
|
start_step = global_step,
|
|
writer=summary_writer
|
|
)
|
|
|
|
loss_am = AverageMeter()
|
|
amp = torch.cuda.amp.grad_scaler.GradScaler(growth_interval=100)
|
|
|
|
for epoch in range(start_epoch, cfg.num_epoch):
|
|
|
|
if isinstance(train_loader, DataLoader):
|
|
train_loader.sampler.set_epoch(epoch)
|
|
for _, (img, local_labels) in enumerate(train_loader):
|
|
global_step += 1
|
|
local_embeddings = backbone(img)
|
|
loss: torch.Tensor = module_partial_fc(local_embeddings, local_labels)
|
|
|
|
if cfg.fp16:
|
|
amp.scale(loss).backward()
|
|
if global_step % cfg.gradient_acc == 0:
|
|
amp.unscale_(opt)
|
|
torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5)
|
|
amp.step(opt)
|
|
amp.update()
|
|
opt.zero_grad()
|
|
else:
|
|
loss.backward()
|
|
if global_step % cfg.gradient_acc == 0:
|
|
torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5)
|
|
opt.step()
|
|
opt.zero_grad()
|
|
lr_scheduler.step()
|
|
|
|
with torch.no_grad():
|
|
if wandb_logger:
|
|
wandb_logger.log({
|
|
'Loss/Step Loss': loss.item(),
|
|
'Loss/Train Loss': loss_am.avg,
|
|
'Process/Step': global_step,
|
|
'Process/Epoch': epoch
|
|
})
|
|
|
|
loss_am.update(loss.item(), 1)
|
|
callback_logging(global_step, loss_am, epoch, cfg.fp16, lr_scheduler.get_last_lr()[0], amp)
|
|
|
|
if global_step % cfg.verbose == 0 and global_step > 0:
|
|
callback_verification(global_step, backbone)
|
|
|
|
if cfg.save_all_states:
|
|
checkpoint = {
|
|
"epoch": epoch + 1,
|
|
"global_step": global_step,
|
|
"state_dict_backbone": backbone.module.state_dict(),
|
|
"state_dict_softmax_fc": module_partial_fc.state_dict(),
|
|
"state_optimizer": opt.state_dict(),
|
|
"state_lr_scheduler": lr_scheduler.state_dict()
|
|
}
|
|
torch.save(checkpoint, os.path.join(cfg.output, f"checkpoint_gpu_{rank}.pt"))
|
|
|
|
if rank == 0:
|
|
path_module = os.path.join(cfg.output, "model.pt")
|
|
torch.save(backbone.module.state_dict(), path_module)
|
|
|
|
if wandb_logger and cfg.save_artifacts:
|
|
artifact_name = f"{run_name}_E{epoch}"
|
|
model = wandb.Artifact(artifact_name, type='model')
|
|
model.add_file(path_module)
|
|
wandb_logger.log_artifact(model)
|
|
|
|
if cfg.dali:
|
|
train_loader.reset()
|
|
|
|
if rank == 0:
|
|
path_module = os.path.join(cfg.output, "model.pt")
|
|
torch.save(backbone.module.state_dict(), path_module)
|
|
|
|
if wandb_logger and cfg.save_artifacts:
|
|
artifact_name = f"{run_name}_Final"
|
|
model = wandb.Artifact(artifact_name, type='model')
|
|
model.add_file(path_module)
|
|
wandb_logger.log_artifact(model)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.backends.cudnn.benchmark = True
|
|
parser = argparse.ArgumentParser(
|
|
description="Distributed Arcface Training in Pytorch")
|
|
parser.add_argument("config", type=str, help="py config file")
|
|
main(parser.parse_args())
|