Files
insightface/detection/retinaface/rcnn/core/tester.py
2021-06-19 23:57:15 +08:00

528 lines
19 KiB
Python

from __future__ import print_function
try:
import cPickle as pickle
except ImportError:
import pickle
import os
import sys
import time
import mxnet as mx
import numpy as np
from builtins import range
from mxnet.module import Module
from .module import MutableModule
from rcnn.logger import logger
from rcnn.config import config
from rcnn.io import image
from rcnn.processing.bbox_transform import bbox_pred, clip_boxes
from rcnn.processing.nms import py_nms_wrapper, cpu_nms_wrapper, gpu_nms_wrapper
from rcnn.processing.bbox_transform import bbox_overlaps
def IOU(Reframe, GTframe):
x1 = Reframe[0]
y1 = Reframe[1]
width1 = Reframe[2] - Reframe[0]
height1 = Reframe[3] - Reframe[1]
x2 = GTframe[0]
y2 = GTframe[1]
width2 = GTframe[2] - GTframe[0]
height2 = GTframe[3] - GTframe[1]
endx = max(x1 + width1, x2 + width2)
startx = min(x1, x2)
width = width1 + width2 - (endx - startx)
endy = max(y1 + height1, y2 + height2)
starty = min(y1, y2)
height = height1 + height2 - (endy - starty)
if width <= 0 or height <= 0:
ratio = 0
else:
Area = width * height
Area1 = width1 * height1
Area2 = width2 * height2
ratio = Area * 1. / (Area1 + Area2 - Area)
return ratio
class Predictor(object):
def __init__(self,
symbol,
data_names,
label_names,
context=mx.cpu(),
max_data_shapes=None,
provide_data=None,
provide_label=None,
arg_params=None,
aux_params=None):
#self._mod = MutableModule(symbol, data_names, label_names,
# context=context, max_data_shapes=max_data_shapes)
self._mod = Module(symbol, data_names, label_names, context=context)
self._mod.bind(provide_data, provide_label, for_training=False)
self._mod.init_params(arg_params=arg_params, aux_params=aux_params)
def predict(self, data_batch):
self._mod.forward(data_batch)
return dict(zip(self._mod.output_names,
self._mod.get_outputs())) #TODO
#return self._mod.get_outputs()
def im_proposal(predictor, data_batch, data_names, scale):
data_dict = dict(zip(data_names, data_batch.data))
output = predictor.predict(data_batch)
# drop the batch index
boxes = output['rois_output'].asnumpy()[:, 1:]
scores = output['rois_score'].asnumpy()
# transform to original scale
boxes = boxes / scale
return scores, boxes, data_dict
def _im_proposal(predictor, data_batch, data_names, scale):
data_dict = dict(zip(data_names, data_batch.data))
output = predictor.predict(data_batch)
print('output', output)
# drop the batch index
boxes = output['rois_output'].asnumpy()[:, 1:]
scores = output['rois_score'].asnumpy()
# transform to original scale
boxes = boxes / scale
return scores, boxes, data_dict
def generate_proposals(predictor, test_data, imdb, vis=False, thresh=0.):
"""
Generate detections results using RPN.
:param predictor: Predictor
:param test_data: data iterator, must be non-shuffled
:param imdb: image database
:param vis: controls visualization
:param thresh: thresh for valid detections
:return: list of detected boxes
"""
assert vis or not test_data.shuffle
data_names = [k[0] for k in test_data.provide_data]
i = 0
t = time.time()
imdb_boxes = list()
original_boxes = list()
for im_info, data_batch in test_data:
t1 = time.time() - t
t = time.time()
scale = im_info[0, 2]
scores, boxes, data_dict = im_proposal(predictor, data_batch,
data_names, scale)
print(scores.shape, boxes.shape, file=sys.stderr)
t2 = time.time() - t
t = time.time()
# assemble proposals
dets = np.hstack((boxes, scores))
original_boxes.append(dets)
# filter proposals
keep = np.where(dets[:, 4:] > thresh)[0]
dets = dets[keep, :]
imdb_boxes.append(dets)
if vis:
vis_all_detection(data_dict['data'].asnumpy(), [dets], ['obj'],
scale)
logger.info('generating %d/%d ' % (i + 1, imdb.num_images) +
'proposal %d ' % (dets.shape[0]) + 'data %.4fs net %.4fs' %
(t1, t2))
i += 1
assert len(imdb_boxes) == imdb.num_images, 'calculations not complete'
# save results
rpn_folder = os.path.join(imdb.root_path, 'rpn_data')
if not os.path.exists(rpn_folder):
os.mkdir(rpn_folder)
rpn_file = os.path.join(rpn_folder, imdb.name + '_rpn.pkl')
with open(rpn_file, 'wb') as f:
pickle.dump(imdb_boxes, f, pickle.HIGHEST_PROTOCOL)
if thresh > 0:
full_rpn_file = os.path.join(rpn_folder, imdb.name + '_full_rpn.pkl')
with open(full_rpn_file, 'wb') as f:
pickle.dump(original_boxes, f, pickle.HIGHEST_PROTOCOL)
logger.info('wrote rpn proposals to %s' % rpn_file)
return imdb_boxes
def test_proposals(predictor, test_data, imdb, roidb, vis=False):
"""
Test detections results using RPN.
:param predictor: Predictor
:param test_data: data iterator, must be non-shuffled
:param imdb: image database
:param roidb: roidb
:param vis: controls visualization
:return: recall, mAP
"""
assert vis or not test_data.shuffle
data_names = [k[0] for k in test_data.provide_data]
#bbox_file = os.path.join(rpn_folder, imdb.name + '_bbox.txt')
#bbox_f = open(bbox_file, 'w')
i = 0
t = time.time()
output_folder = os.path.join(imdb.root_path, 'output')
if not os.path.exists(output_folder):
os.mkdir(output_folder)
imdb_boxes = list()
original_boxes = list()
gt_overlaps = np.zeros(0)
overall = [0.0, 0.0]
gt_max = np.array((0.0, 0.0))
num_pos = 0
#apply scale, for SSH
#_, roidb = image.get_image(roidb)
for im_info, data_batch in test_data:
t1 = time.time() - t
t = time.time()
oscale = im_info[0, 2]
#print('scale', scale, file=sys.stderr)
scale = 1.0 #fix scale=1.0 for SSH face detector
scores, boxes, data_dict = im_proposal(predictor, data_batch,
data_names, scale)
#print(scores.shape, boxes.shape, file=sys.stderr)
t2 = time.time() - t
t = time.time()
# assemble proposals
dets = np.hstack((boxes, scores))
original_boxes.append(dets)
# filter proposals
keep = np.where(dets[:, 4:] > config.TEST.SCORE_THRESH)[0]
dets = dets[keep, :]
imdb_boxes.append(dets)
logger.info('generating %d/%d ' % (i + 1, imdb.num_images) +
'proposal %d ' % (dets.shape[0]) + 'data %.4fs net %.4fs' %
(t1, t2))
#if dets.shape[0]==0:
# continue
if vis:
vis_all_detection(data_dict['data'].asnumpy(), [dets], ['obj'],
scale)
boxes = dets
#max_gt_overlaps = roidb[i]['gt_overlaps'].max(axis=1)
#gt_inds = np.where((roidb[i]['gt_classes'] > 0) & (max_gt_overlaps == 1))[0]
#gt_boxes = roidb[i]['boxes'][gt_inds, :]
gt_boxes = roidb[i]['boxes'].copy(
) * oscale # as roidb is the original one, need to scale GT for SSH
gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0] + 1) * (gt_boxes[:, 3] -
gt_boxes[:, 1] + 1)
num_pos += gt_boxes.shape[0]
overlaps = bbox_overlaps(boxes.astype(np.float),
gt_boxes.astype(np.float))
#print(im_info, gt_boxes.shape, boxes.shape, overlaps.shape, file=sys.stderr)
_gt_overlaps = np.zeros((gt_boxes.shape[0]))
# choose whatever is smaller to iterate
#for j in range(gt_boxes.shape[0]):
# print('gt %d,%d,%d,%d'% (gt_boxes[j][0], gt_boxes[j][1], gt_boxes[j][2]-gt_boxes[j][0], gt_boxes[j][3]-gt_boxes[j][1]), file=sys.stderr)
# gt_max = np.maximum( gt_max, np.array( (gt_boxes[j][2], gt_boxes[j][3]) ) )
#print('gt max', gt_max, file=sys.stderr)
#for j in range(boxes.shape[0]):
# print('anchor_box %.2f,%.2f,%.2f,%.2f'% (boxes[j][0], boxes[j][1], boxes[j][2]-boxes[j][0], boxes[j][3]-boxes[j][1]), file=sys.stderr)
#rounds = min(boxes.shape[0], gt_boxes.shape[0])
#for j in range(rounds):
# # find which proposal maximally covers each gt box
# argmax_overlaps = overlaps.argmax(axis=0)
# print(j, 'argmax_overlaps', argmax_overlaps, file=sys.stderr)
# # get the IoU amount of coverage for each gt box
# max_overlaps = overlaps.max(axis=0)
# print(j, 'max_overlaps', max_overlaps, file=sys.stderr)
# # find which gt box is covered by most IoU
# gt_ind = max_overlaps.argmax()
# gt_ovr = max_overlaps.max()
# assert (gt_ovr >= 0), '%s\n%s\n%s' % (boxes, gt_boxes, overlaps)
# # find the proposal box that covers the best covered gt box
# box_ind = argmax_overlaps[gt_ind]
# print('max box', gt_ind, box_ind, (boxes[box_ind][0], boxes[box_ind][1], boxes[box_ind][2]-boxes[box_ind][0], boxes[box_ind][3]-boxes[box_ind][1], boxes[box_ind][4]), file=sys.stderr)
# # record the IoU coverage of this gt box
# _gt_overlaps[j] = overlaps[box_ind, gt_ind]
# assert (_gt_overlaps[j] == gt_ovr)
# # mark the proposal box and the gt box as used
# overlaps[box_ind, :] = -1
# overlaps[:, gt_ind] = -1
if boxes.shape[0] > 0:
_gt_overlaps = overlaps.max(axis=0)
#print('max_overlaps', _gt_overlaps, file=sys.stderr)
for j in range(len(_gt_overlaps)):
if _gt_overlaps[j] > config.TEST.IOU_THRESH:
continue
print(j,
'failed',
gt_boxes[j],
'max_overlap:',
_gt_overlaps[j],
file=sys.stderr)
#_idx = np.where(overlaps[:,j]>0.4)[0]
#print(j, _idx, file=sys.stderr)
#print(overlaps[_idx,j], file=sys.stderr)
#for __idx in _idx:
# print(gt_boxes[j], boxes[__idx], overlaps[__idx,j], IOU(gt_boxes[j], boxes[__idx,0:4]), file=sys.stderr)
# append recorded IoU coverage level
found = (_gt_overlaps > config.TEST.IOU_THRESH).sum()
_recall = found / float(gt_boxes.shape[0])
print('recall',
_recall,
gt_boxes.shape[0],
boxes.shape[0],
gt_areas,
file=sys.stderr)
overall[0] += found
overall[1] += gt_boxes.shape[0]
#gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps))
#_recall = (gt_overlaps >= threshold).sum() / float(num_pos)
_recall = float(overall[0]) / overall[1]
print('recall_all', _recall, file=sys.stderr)
boxes[:, 0:4] /= oscale
_vec = roidb[i]['image'].split('/')
out_dir = os.path.join(output_folder, _vec[-2])
if not os.path.exists(out_dir):
os.mkdir(out_dir)
out_file = os.path.join(out_dir, _vec[-1].replace('jpg', 'txt'))
with open(out_file, 'w') as f:
name = '/'.join(roidb[i]['image'].split('/')[-2:])
f.write("%s\n" % (name))
f.write("%d\n" % (boxes.shape[0]))
for b in range(boxes.shape[0]):
box = boxes[b]
f.write(
"%d %d %d %d %g \n" %
(box[0], box[1], box[2] - box[0], box[3] - box[1], box[4]))
i += 1
#bbox_f.close()
return
gt_overlaps = np.sort(gt_overlaps)
recalls = np.zeros_like(thresholds)
# compute recall for each IoU threshold
for i, t in enumerate(thresholds):
recalls[i] = (gt_overlaps >= t).sum() / float(num_pos)
ar = recalls.mean()
# print results
print('average recall for {}: {:.3f}'.format(area_name, ar))
for threshold, recall in zip(thresholds, recalls):
print('recall @{:.2f}: {:.3f}'.format(threshold, recall))
assert len(imdb_boxes) == imdb.num_images, 'calculations not complete'
# save results
rpn_file = os.path.join(rpn_folder, imdb.name + '_rpn.pkl')
with open(rpn_file, 'wb') as f:
pickle.dump(imdb_boxes, f, pickle.HIGHEST_PROTOCOL)
logger.info('wrote rpn proposals to %s' % rpn_file)
return imdb_boxes
def im_detect(predictor, data_batch, data_names, scale):
output = predictor.predict(data_batch)
data_dict = dict(zip(data_names, data_batch.data))
if config.TEST.HAS_RPN:
rois = output['rois_output'].asnumpy()[:, 1:]
else:
rois = data_dict['rois'].asnumpy().reshape((-1, 5))[:, 1:]
im_shape = data_dict['data'].shape
# save output
scores = output['cls_prob_reshape_output'].asnumpy()[0]
bbox_deltas = output['bbox_pred_reshape_output'].asnumpy()[0]
# post processing
pred_boxes = bbox_pred(rois, bbox_deltas)
pred_boxes = clip_boxes(pred_boxes, im_shape[-2:])
# we used scaled image & roi to train, so it is necessary to transform them back
pred_boxes = pred_boxes / scale
return scores, pred_boxes, data_dict
def pred_eval(predictor, test_data, imdb, vis=False, thresh=1e-3):
"""
wrapper for calculating offline validation for faster data analysis
in this example, all threshold are set by hand
:param predictor: Predictor
:param test_data: data iterator, must be non-shuffle
:param imdb: image database
:param vis: controls visualization
:param thresh: valid detection threshold
:return:
"""
assert vis or not test_data.shuffle
data_names = [k[0] for k in test_data.provide_data]
nms = py_nms_wrapper(config.TEST.NMS)
# limit detections to max_per_image over all classes
max_per_image = -1
num_images = imdb.num_images
# all detections are collected into:
# all_boxes[cls][image] = N x 5 array of detections in
# (x1, y1, x2, y2, score)
all_boxes = [[[] for _ in range(num_images)]
for _ in range(imdb.num_classes)]
i = 0
t = time.time()
for im_info, data_batch in test_data:
t1 = time.time() - t
t = time.time()
scale = im_info[0, 2]
scores, boxes, data_dict = im_detect(predictor, data_batch, data_names,
scale)
t2 = time.time() - t
t = time.time()
for j in range(1, imdb.num_classes):
indexes = np.where(scores[:, j] > thresh)[0]
cls_scores = scores[indexes, j, np.newaxis]
cls_boxes = boxes[indexes, j * 4:(j + 1) * 4]
cls_dets = np.hstack((cls_boxes, cls_scores))
keep = nms(cls_dets)
all_boxes[j][i] = cls_dets[keep, :]
if max_per_image > 0:
image_scores = np.hstack(
[all_boxes[j][i][:, -1] for j in range(1, imdb.num_classes)])
if len(image_scores) > max_per_image:
image_thresh = np.sort(image_scores)[-max_per_image]
for j in range(1, imdb.num_classes):
keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
all_boxes[j][i] = all_boxes[j][i][keep, :]
if vis:
boxes_this_image = [[]] + [
all_boxes[j][i] for j in range(1, imdb.num_classes)
]
vis_all_detection(data_dict['data'].asnumpy(), boxes_this_image,
imdb.classes, scale)
t3 = time.time() - t
t = time.time()
logger.info('testing %d/%d data %.4fs net %.4fs post %.4fs' %
(i, imdb.num_images, t1, t2, t3))
i += 1
det_file = os.path.join(imdb.cache_path, imdb.name + '_detections.pkl')
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, protocol=pickle.HIGHEST_PROTOCOL)
imdb.evaluate_detections(all_boxes)
def vis_all_detection(im_array, detections, class_names, scale):
"""
visualize all detections in one image
:param im_array: [b=1 c h w] in rgb
:param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
:param class_names: list of names in imdb
:param scale: visualize the scaled image
:return:
"""
import matplotlib.pyplot as plt
import random
im = image.transform_inverse(im_array, config.PIXEL_MEANS)
plt.imshow(im)
for j, name in enumerate(class_names):
if name == '__background__':
continue
color = (random.random(), random.random(), random.random()
) # generate a random color
dets = detections[j]
for det in dets:
bbox = det[:4] * scale
score = det[-1]
rect = plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1],
fill=False,
edgecolor=color,
linewidth=3.5)
plt.gca().add_patch(rect)
plt.gca().text(bbox[0],
bbox[1] - 2,
'{:s} {:.3f}'.format(name, score),
bbox=dict(facecolor=color, alpha=0.5),
fontsize=12,
color='white')
plt.show()
def draw_all_detection(im_array, detections, class_names, scale):
"""
visualize all detections in one image
:param im_array: [b=1 c h w] in rgb
:param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
:param class_names: list of names in imdb
:param scale: visualize the scaled image
:return:
"""
import cv2
import random
color_white = (255, 255, 255)
im = image.transform_inverse(im_array, config.PIXEL_MEANS)
# change to bgr
im = cv2.cvtColor(im, cv2.cv.CV_RGB2BGR)
for j, name in enumerate(class_names):
if name == '__background__':
continue
color = (random.randint(0, 256), random.randint(0, 256),
random.randint(0, 256)) # generate a random color
dets = detections[j]
for det in dets:
bbox = det[:4] * scale
score = det[-1]
bbox = map(int, bbox)
cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
color=color,
thickness=2)
cv2.putText(im,
'%s %.3f' % (class_names[j], score),
(bbox[0], bbox[1] + 10),
color=color_white,
fontFace=cv2.FONT_HERSHEY_COMPLEX,
fontScale=0.5)
return im