mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
166 lines
5.6 KiB
Python
166 lines
5.6 KiB
Python
# --------------------------------------------------------
|
|
# Fast R-CNN
|
|
# Copyright (c) 2015 Microsoft
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
# Written by Ross Girshick
|
|
# --------------------------------------------------------
|
|
|
|
import os
|
|
from os.path import join as pjoin
|
|
from setuptools import setup
|
|
from distutils.extension import Extension
|
|
from Cython.Distutils import build_ext
|
|
import numpy as np
|
|
|
|
|
|
def find_in_path(name, path):
|
|
"Find a file in a search path"
|
|
# Adapted fom
|
|
# http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/
|
|
for dir in path.split(os.pathsep):
|
|
binpath = pjoin(dir, name)
|
|
if os.path.exists(binpath):
|
|
return os.path.abspath(binpath)
|
|
return None
|
|
|
|
|
|
def locate_cuda():
|
|
"""Locate the CUDA environment on the system
|
|
|
|
Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64'
|
|
and values giving the absolute path to each directory.
|
|
|
|
Starts by looking for the CUDAHOME env variable. If not found, everything
|
|
is based on finding 'nvcc' in the PATH.
|
|
"""
|
|
|
|
# first check if the CUDAHOME env variable is in use
|
|
if 'CUDAHOME' in os.environ:
|
|
home = os.environ['CUDAHOME']
|
|
nvcc = pjoin(home, 'bin', 'nvcc')
|
|
else:
|
|
# otherwise, search the PATH for NVCC
|
|
default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin')
|
|
nvcc = find_in_path('nvcc',
|
|
os.environ['PATH'] + os.pathsep + default_path)
|
|
if nvcc is None:
|
|
raise EnvironmentError(
|
|
'The nvcc binary could not be '
|
|
'located in your $PATH. Either add it to your path, or set $CUDAHOME'
|
|
)
|
|
home = os.path.dirname(os.path.dirname(nvcc))
|
|
|
|
cudaconfig = {
|
|
'home': home,
|
|
'nvcc': nvcc,
|
|
'include': pjoin(home, 'include'),
|
|
'lib64': pjoin(home, 'lib64')
|
|
}
|
|
for k, v in cudaconfig.items():
|
|
if not os.path.exists(v):
|
|
raise EnvironmentError(
|
|
'The CUDA %s path could not be located in %s' % (k, v))
|
|
|
|
return cudaconfig
|
|
|
|
|
|
# Test if cuda could be foun
|
|
try:
|
|
CUDA = locate_cuda()
|
|
except EnvironmentError:
|
|
CUDA = None
|
|
|
|
# Obtain the numpy include directory. This logic works across numpy versions.
|
|
try:
|
|
numpy_include = np.get_include()
|
|
except AttributeError:
|
|
numpy_include = np.get_numpy_include()
|
|
|
|
|
|
def customize_compiler_for_nvcc(self):
|
|
"""inject deep into distutils to customize how the dispatch
|
|
to gcc/nvcc works.
|
|
|
|
If you subclass UnixCCompiler, it's not trivial to get your subclass
|
|
injected in, and still have the right customizations (i.e.
|
|
distutils.sysconfig.customize_compiler) run on it. So instead of going
|
|
the OO route, I have this. Note, it's kindof like a wierd functional
|
|
subclassing going on."""
|
|
|
|
# tell the compiler it can processes .cu
|
|
self.src_extensions.append('.cu')
|
|
|
|
# save references to the default compiler_so and _comple methods
|
|
default_compiler_so = self.compiler_so
|
|
super = self._compile
|
|
|
|
# now redefine the _compile method. This gets executed for each
|
|
# object but distutils doesn't have the ability to change compilers
|
|
# based on source extension: we add it.
|
|
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
|
|
if os.path.splitext(src)[1] == '.cu':
|
|
# use the cuda for .cu files
|
|
self.set_executable('compiler_so', CUDA['nvcc'])
|
|
# use only a subset of the extra_postargs, which are 1-1 translated
|
|
# from the extra_compile_args in the Extension class
|
|
postargs = extra_postargs['nvcc']
|
|
else:
|
|
postargs = extra_postargs['gcc']
|
|
|
|
super(obj, src, ext, cc_args, postargs, pp_opts)
|
|
# reset the default compiler_so, which we might have changed for cuda
|
|
self.compiler_so = default_compiler_so
|
|
|
|
# inject our redefined _compile method into the class
|
|
self._compile = _compile
|
|
|
|
|
|
# run the customize_compiler
|
|
class custom_build_ext(build_ext):
|
|
def build_extensions(self):
|
|
customize_compiler_for_nvcc(self.compiler)
|
|
build_ext.build_extensions(self)
|
|
|
|
|
|
ext_modules = [
|
|
Extension("bbox", ["bbox.pyx"],
|
|
extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
|
|
include_dirs=[numpy_include]),
|
|
Extension("anchors", ["anchors.pyx"],
|
|
extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
|
|
include_dirs=[numpy_include]),
|
|
Extension("cpu_nms", ["cpu_nms.pyx"],
|
|
extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
|
|
include_dirs=[numpy_include]),
|
|
]
|
|
|
|
if CUDA is not None:
|
|
ext_modules.append(
|
|
Extension(
|
|
'gpu_nms',
|
|
['nms_kernel.cu', 'gpu_nms.pyx'],
|
|
library_dirs=[CUDA['lib64']],
|
|
libraries=['cudart'],
|
|
language='c++',
|
|
runtime_library_dirs=[CUDA['lib64']],
|
|
# this syntax is specific to this build system
|
|
# we're only going to use certain compiler args with nvcc and not with
|
|
# gcc the implementation of this trick is in customize_compiler() below
|
|
extra_compile_args={
|
|
'gcc': ["-Wno-unused-function"],
|
|
'nvcc': [
|
|
'-arch=sm_35', '--ptxas-options=-v', '-c',
|
|
'--compiler-options', "'-fPIC'"
|
|
]
|
|
},
|
|
include_dirs=[numpy_include, CUDA['include']]))
|
|
else:
|
|
print('Skipping GPU_NMS')
|
|
|
|
setup(
|
|
name='frcnn_cython',
|
|
ext_modules=ext_modules,
|
|
# inject our custom trigger
|
|
cmdclass={'build_ext': custom_build_ext},
|
|
)
|