Files
insightface/detection/retinaface/train.py
2021-06-19 23:57:15 +08:00

503 lines
20 KiB
Python

from __future__ import print_function
import sys
import argparse
import os
import pprint
import re
import mxnet as mx
import numpy as np
from mxnet.module import Module
import mxnet.optimizer as optimizer
from rcnn.logger import logger
from rcnn.config import config, default, generate_config
from rcnn.symbol import *
from rcnn.core import callback, metric
from rcnn.core.loader import CropLoader, CropLoader2
from rcnn.core.module import MutableModule
from rcnn.utils.load_data import load_gt_roidb, merge_roidb, filter_roidb
from rcnn.utils.load_model import load_param
def get_fixed_params(symbol, fixed_param):
if not config.LAYER_FIX:
return []
fixed_param_names = []
#for name in symbol.list_arguments():
# for f in fixed_param:
# if re.match(f, name):
# fixed_param_names.append(name)
#pre = 'mobilenetv20_features_linearbottleneck'
idx = 0
for name in symbol.list_arguments():
#print(idx, name)
if idx < 7 and name != 'data':
fixed_param_names.append(name)
#elif name.startswith('stage1_'):
# fixed_param_names.append(name)
if name.find('upsampling') >= 0:
fixed_param_names.append(name)
idx += 1
return fixed_param_names
def train_net(args,
ctx,
pretrained,
epoch,
prefix,
begin_epoch,
end_epoch,
lr=0.001,
lr_step='5'):
# setup config
#init_config()
#print(config)
# setup multi-gpu
input_batch_size = config.TRAIN.BATCH_IMAGES * len(ctx)
# print config
logger.info(pprint.pformat(config))
# load dataset and prepare imdb for training
image_sets = [iset for iset in args.image_set.split('+')]
roidbs = [
load_gt_roidb(args.dataset,
image_set,
args.root_path,
args.dataset_path,
flip=not args.no_flip) for image_set in image_sets
]
#roidb = merge_roidb(roidbs)
#roidb = filter_roidb(roidb)
roidb = roidbs[0]
# load symbol
#sym = eval('get_' + args.network + '_train')(num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)
#feat_sym = sym.get_internals()['rpn_cls_score_output']
#train_data = AnchorLoader(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
# ctx=ctx, work_load_list=args.work_load_list,
# feat_stride=config.RPN_FEAT_STRIDE, anchor_scales=config.ANCHOR_SCALES,
# anchor_ratios=config.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)
# load and initialize params
sym = None
if len(pretrained) == 0:
arg_params = {}
aux_params = {}
else:
logger.info('loading %s,%d' % (pretrained, epoch))
sym, arg_params, aux_params = mx.model.load_checkpoint(
pretrained, epoch)
#arg_params, aux_params = load_param(pretrained, epoch, convert=True)
#for k in ['rpn_conv_3x3', 'rpn_cls_score', 'rpn_bbox_pred', 'cls_score', 'bbox_pred']:
# _k = k+"_weight"
# if _k in arg_shape_dict:
# v = 0.001 if _k.startswith('bbox_') else 0.01
# arg_params[_k] = mx.random.normal(0, v, shape=arg_shape_dict[_k])
# print('init %s with normal %.5f'%(_k,v))
# _k = k+"_bias"
# if _k in arg_shape_dict:
# arg_params[_k] = mx.nd.zeros(shape=arg_shape_dict[_k])
# print('init %s with zero'%(_k))
sym = eval('get_' + args.network + '_train')(sym)
#print(sym.get_internals())
feat_sym = []
for stride in config.RPN_FEAT_STRIDE:
feat_sym.append(
sym.get_internals()['face_rpn_cls_score_stride%s_output' % stride])
train_data = CropLoader(feat_sym,
roidb,
batch_size=input_batch_size,
shuffle=not args.no_shuffle,
ctx=ctx,
work_load_list=args.work_load_list)
# infer max shape
max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]),
max([v[1] for v in config.SCALES])))]
#max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
max_data_shape.append(('gt_boxes', (1, roidb[0]['max_num_boxes'], 5)))
logger.info('providing maximum shape %s %s' %
(max_data_shape, max_label_shape))
# infer shape
data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
logger.info('output shape %s' % pprint.pformat(out_shape_dict))
for k in arg_shape_dict:
v = arg_shape_dict[k]
if k.find('upsampling') >= 0:
print('initializing upsampling_weight', k)
arg_params[k] = mx.nd.zeros(shape=v)
init = mx.init.Initializer()
init._init_bilinear(k, arg_params[k])
#print(args[k])
# check parameter shapes
#for k in sym.list_arguments():
# if k in data_shape_dict:
# continue
# assert k in arg_params, k + ' not initialized'
# assert arg_params[k].shape == arg_shape_dict[k], \
# 'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
#for k in sym.list_auxiliary_states():
# assert k in aux_params, k + ' not initialized'
# assert aux_params[k].shape == aux_shape_dict[k], \
# 'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)
fixed_param_prefix = config.FIXED_PARAMS
# create solver
data_names = [k[0] for k in train_data.provide_data]
label_names = [k[0] for k in train_data.provide_label]
fixed_param_names = get_fixed_params(sym, fixed_param_prefix)
print('fixed', fixed_param_names, file=sys.stderr)
mod = Module(sym,
data_names=data_names,
label_names=label_names,
logger=logger,
context=ctx,
work_load_list=args.work_load_list,
fixed_param_names=fixed_param_names)
# metric
eval_metrics = mx.metric.CompositeEvalMetric()
mid = 0
for m in range(len(config.RPN_FEAT_STRIDE)):
stride = config.RPN_FEAT_STRIDE[m]
#mid = m*MSTEP
_metric = metric.RPNAccMetric(pred_idx=mid,
label_idx=mid + 1,
name='RPNAcc_s%s' % stride)
eval_metrics.add(_metric)
mid += 2
#_metric = metric.RPNLogLossMetric(pred_idx=mid, label_idx=mid+1)
#eval_metrics.add(_metric)
_metric = metric.RPNL1LossMetric(loss_idx=mid,
weight_idx=mid + 1,
name='RPNL1Loss_s%s' % stride)
eval_metrics.add(_metric)
mid += 2
if config.FACE_LANDMARK:
_metric = metric.RPNL1LossMetric(loss_idx=mid,
weight_idx=mid + 1,
name='RPNLandMarkL1Loss_s%s' %
stride)
eval_metrics.add(_metric)
mid += 2
if config.HEAD_BOX:
_metric = metric.RPNAccMetric(pred_idx=mid,
label_idx=mid + 1,
name='RPNAcc_head_s%s' % stride)
eval_metrics.add(_metric)
mid += 2
#_metric = metric.RPNLogLossMetric(pred_idx=mid, label_idx=mid+1)
#eval_metrics.add(_metric)
_metric = metric.RPNL1LossMetric(loss_idx=mid,
weight_idx=mid + 1,
name='RPNL1Loss_head_s%s' %
stride)
eval_metrics.add(_metric)
mid += 2
if config.CASCADE > 0:
for _idx in range(config.CASCADE):
if stride in config.CASCADE_CLS_STRIDES:
_metric = metric.RPNAccMetric(pred_idx=mid,
label_idx=mid + 1,
name='RPNAccCAS%d_s%s' %
(_idx, stride))
eval_metrics.add(_metric)
mid += 2
if stride in config.CASCADE_BBOX_STRIDES:
_metric = metric.RPNL1LossMetric(
loss_idx=mid,
weight_idx=mid + 1,
name='RPNL1LossCAS%d_s%s' % (_idx, stride))
eval_metrics.add(_metric)
mid += 2
# callback
#means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
#stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
#epoch_end_callback = callback.do_checkpoint(prefix, means, stds)
epoch_end_callback = None
# decide learning rate
#base_lr = lr
#lr_factor = 0.1
#lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
lr_epoch_diff = [
epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
]
lr_iters = [
int(epoch * len(roidb) / input_batch_size) for epoch in lr_epoch_diff
]
iter_per_epoch = int(len(roidb) / input_batch_size)
lr_steps = []
if len(lr_iters) == 5:
factors = [0.5, 0.5, 0.4, 0.1, 0.1]
for i in range(5):
lr_steps.append((lr_iters[i], factors[i]))
elif len(lr_iters) == 8: #warmup
for li in lr_iters[0:5]:
lr_steps.append((li, 1.5849))
for li in lr_iters[5:]:
lr_steps.append((li, 0.1))
else:
for li in lr_iters:
lr_steps.append((li, 0.1))
#lr_steps = [ (10,0.1), (20, 0.1) ] #XXX
end_epoch = 10000
logger.info('lr %f lr_epoch_diff %s lr_steps %s' %
(lr, lr_epoch_diff, lr_steps))
# optimizer
opt = optimizer.SGD(learning_rate=lr,
momentum=0.9,
wd=args.wd,
rescale_grad=1.0 / len(ctx),
clip_gradient=None)
initializer = mx.init.Xavier()
#initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style
train_data = mx.io.PrefetchingIter(train_data)
_cb = mx.callback.Speedometer(train_data.batch_size,
frequent=args.frequent,
auto_reset=False)
global_step = [0]
def save_model(epoch):
arg, aux = mod.get_params()
all_layers = mod.symbol.get_internals()
outs = []
for stride in config.RPN_FEAT_STRIDE:
num_anchors = config.RPN_ANCHOR_CFG[str(stride)]['NUM_ANCHORS']
if config.CASCADE > 0:
_name = 'face_rpn_cls_score_stride%d_output' % (stride)
cls_pred = all_layers[_name]
cls_pred = mx.symbol.Reshape(data=cls_pred,
shape=(0, 2, -1, 0))
cls_pred = mx.symbol.SoftmaxActivation(data=cls_pred,
mode="channel")
cls_pred = mx.symbol.Reshape(data=cls_pred,
shape=(0, 2 * num_anchors, -1, 0))
outs.append(cls_pred)
_name = 'face_rpn_bbox_pred_stride%d_output' % stride
rpn_bbox_pred = all_layers[_name]
outs.append(rpn_bbox_pred)
if config.FACE_LANDMARK:
_name = 'face_rpn_landmark_pred_stride%d_output' % stride
rpn_landmark_pred = all_layers[_name]
outs.append(rpn_landmark_pred)
for casid in range(config.CASCADE):
if stride in config.CASCADE_CLS_STRIDES:
_name = 'face_rpn_cls_score_stride%d_cas%d_output' % (
stride, casid)
cls_pred = all_layers[_name]
cls_pred = mx.symbol.Reshape(data=cls_pred,
shape=(0, 2, -1, 0))
cls_pred = mx.symbol.SoftmaxActivation(data=cls_pred,
mode="channel")
cls_pred = mx.symbol.Reshape(data=cls_pred,
shape=(0, 2 * num_anchors,
-1, 0))
outs.append(cls_pred)
if stride in config.CASCADE_BBOX_STRIDES:
_name = 'face_rpn_bbox_pred_stride%d_cas%d_output' % (
stride, casid)
bbox_pred = all_layers[_name]
outs.append(bbox_pred)
else:
_name = 'face_rpn_cls_score_stride%d_output' % stride
rpn_cls_score = all_layers[_name]
# prepare rpn data
rpn_cls_score_reshape = mx.symbol.Reshape(
data=rpn_cls_score,
shape=(0, 2, -1, 0),
name="face_rpn_cls_score_reshape_stride%d" % stride)
rpn_cls_prob = mx.symbol.SoftmaxActivation(
data=rpn_cls_score_reshape,
mode="channel",
name="face_rpn_cls_prob_stride%d" % stride)
rpn_cls_prob_reshape = mx.symbol.Reshape(
data=rpn_cls_prob,
shape=(0, 2 * num_anchors, -1, 0),
name='face_rpn_cls_prob_reshape_stride%d' % stride)
_name = 'face_rpn_bbox_pred_stride%d_output' % stride
rpn_bbox_pred = all_layers[_name]
outs.append(rpn_cls_prob_reshape)
outs.append(rpn_bbox_pred)
if config.FACE_LANDMARK:
_name = 'face_rpn_landmark_pred_stride%d_output' % stride
rpn_landmark_pred = all_layers[_name]
outs.append(rpn_landmark_pred)
_sym = mx.sym.Group(outs)
mx.model.save_checkpoint(prefix, epoch, _sym, arg, aux)
def _batch_callback(param):
#global global_step
_cb(param)
global_step[0] += 1
mbatch = global_step[0]
for step in lr_steps:
if mbatch == step[0]:
opt.lr *= step[1]
print('lr change to',
opt.lr,
' in batch',
mbatch,
file=sys.stderr)
break
if mbatch % iter_per_epoch == 0:
print('saving checkpoint', mbatch, file=sys.stderr)
save_model(0)
if mbatch == lr_steps[-1][0]:
print('saving final checkpoint', mbatch, file=sys.stderr)
save_model(0)
#arg, aux = mod.get_params()
#mx.model.save_checkpoint(prefix, 99, mod.symbol, arg, aux)
sys.exit(0)
# train
mod.fit(train_data,
eval_metric=eval_metrics,
epoch_end_callback=epoch_end_callback,
batch_end_callback=_batch_callback,
kvstore=args.kvstore,
optimizer=opt,
initializer=initializer,
allow_missing=True,
arg_params=arg_params,
aux_params=aux_params,
begin_epoch=begin_epoch,
num_epoch=end_epoch)
def parse_args():
parser = argparse.ArgumentParser(description='Train RetinaFace')
# general
parser.add_argument('--network',
help='network name',
default=default.network,
type=str)
parser.add_argument('--dataset',
help='dataset name',
default=default.dataset,
type=str)
args, rest = parser.parse_known_args()
generate_config(args.network, args.dataset)
parser.add_argument('--image_set',
help='image_set name',
default=default.image_set,
type=str)
parser.add_argument('--root_path',
help='output data folder',
default=default.root_path,
type=str)
parser.add_argument('--dataset_path',
help='dataset path',
default=default.dataset_path,
type=str)
# training
parser.add_argument('--frequent',
help='frequency of logging',
default=default.frequent,
type=int)
parser.add_argument('--kvstore',
help='the kv-store type',
default=default.kvstore,
type=str)
parser.add_argument('--work_load_list',
help='work load for different devices',
default=None,
type=list)
parser.add_argument('--no_flip',
help='disable flip images',
action='store_true')
parser.add_argument('--no_shuffle',
help='disable random shuffle',
action='store_true')
# e2e
#parser.add_argument('--gpus', help='GPU device to train with', default='0,1,2,3', type=str)
parser.add_argument('--pretrained',
help='pretrained model prefix',
default=default.pretrained,
type=str)
parser.add_argument('--pretrained_epoch',
help='pretrained model epoch',
default=default.pretrained_epoch,
type=int)
parser.add_argument('--prefix',
help='new model prefix',
default=default.prefix,
type=str)
parser.add_argument('--begin_epoch',
help='begin epoch of training, use with resume',
default=0,
type=int)
parser.add_argument('--end_epoch',
help='end epoch of training',
default=default.end_epoch,
type=int)
parser.add_argument('--lr',
help='base learning rate',
default=default.lr,
type=float)
parser.add_argument('--lr_step',
help='learning rate steps (in epoch)',
default=default.lr_step,
type=str)
parser.add_argument('--wd',
help='weight decay',
default=default.wd,
type=float)
args = parser.parse_args()
return args
def main():
args = parse_args()
logger.info('Called with argument: %s' % args)
#ctx = [mx.gpu(int(i)) for i in args.gpus.split(',')]
ctx = []
cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip()
if len(cvd) > 0:
for i in range(len(cvd.split(','))):
ctx.append(mx.gpu(i))
if len(ctx) == 0:
ctx = [mx.cpu()]
print('use cpu')
else:
print('gpu num:', len(ctx))
train_net(args,
ctx,
args.pretrained,
args.pretrained_epoch,
args.prefix,
args.begin_epoch,
args.end_epoch,
lr=args.lr,
lr_step=args.lr_step)
if __name__ == '__main__':
main()