mirror of
https://github.com/deepinsight/insightface.git
synced 2026-02-16 18:30:18 +00:00
Parital FC
TODO
- No BUG Sampling
- Pytorch Experiments (Glint360k, 1.0/0.1)
- Mixed precision training
- Pipeline Parallel
- Checkpoint
- Docker
- A Wonderful Documents
Results
We employ ResNet100 as the backbone.
1. IJB-C results
| Datasets | 1e-05 | 1e-04 | 1e-03 | 1e-02 | 1e-01 |
|---|---|---|---|---|---|
| Glint360K | 95.92 | 97.30 | 98.13 | 98.78 | 99.28 |
| MS1MV2 | 94.22 | 96.27 | 97.61 | 98.34 | 99.08 |
2. IFRT results
TODO
Training Speed Benchmark
1. Train MS1MV2
Employ ResNet100 as the backbone.
| GPU | FP16 | BatchSize / it | Throughput img / sec | Time / hours |
|---|---|---|---|---|
| 8 * Tesla V100-SXM2-32GB | False | 64 | 1658 | 15 |
| 8 * Tesla V100-SXM2-32GB | True | 64 | 2243 | 12 |
| 8 * Tesla V100-SXM2-32GB | False | 128 | 1800 | 14 |
| 8 * Tesla V100-SXM2-32GB | True | 128 | 3337 | 7 |
| 8 * RTX2080Ti | False | 1200 | ||
| 8 * RTX2080Ti |
Employ ResNet50 as the backbone.
| GPU | FP16 | BatchSize / it | Throughput img / sec | Time / hours |
|---|---|---|---|---|
| 8 * Tesla V100-SXM2-32GB | False | 64 | 2745 | 9 |
| 8 * Tesla V100-SXM2-32GB | True | 64 | 3770 | 7 |
| 8 * Tesla V100-SXM2-32GB | False | 128 | 2833 | 9 |
| 8 * Tesla V100-SXM2-32GB | True | 128 | 5102 | 5 |
2. Train millions classes
TODO
How to run
cuda=10.1
pytorch==1.6.0
pip install -r requirement.txt
bash run.sh
使用 bash run.sh 这个命令运行。
Citation
If you find Partial-FC or Glint360K useful in your research, please consider to cite the following related paper:
@inproceedings{an2020partical_fc,
title={Partial FC: Training 10 Million Identities on a Single Machine},
author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
Zhang, Debing and Fu Ying},
booktitle={Arxiv 2010.05222},
year={2020}
}