Files
insightface/recognition/partial_fc/pytorch
2020-12-26 16:45:31 +08:00
..
2020-11-06 13:59:21 +08:00
2020-11-16 17:20:33 +08:00
2020-10-19 01:07:30 +08:00
2020-12-26 16:45:31 +08:00
2020-11-06 13:59:21 +08:00
2020-12-01 23:29:59 +08:00
2020-11-18 19:33:53 +08:00
2020-10-19 13:19:03 +08:00
2020-11-13 23:13:48 +08:00
2020-11-06 13:59:21 +08:00

Parital FC

TODO

  • No BUG Sampling
  • Pytorch Experiments (Glint360k, 1.0/0.1)
  • Mixed precision training
  • Pipeline Parallel
  • Checkpoint
  • Docker
  • A Wonderful Documents

Results

We employ ResNet100 as the backbone.

1. IJB-C results

Datasets 1e-05 1e-04 1e-03 1e-02 1e-01
Glint360K 95.92 97.30 98.13 98.78 99.28
MS1MV2 94.22 96.27 97.61 98.34 99.08

2. IFRT results

TODO

Training Speed Benchmark

1. Train MS1MV2

Employ ResNet100 as the backbone.

GPU FP16 BatchSize / it Throughput img / sec Time / hours
8 * Tesla V100-SXM2-32GB False 64 1658 15
8 * Tesla V100-SXM2-32GB True 64 2243 12
8 * Tesla V100-SXM2-32GB False 128 1800 14
8 * Tesla V100-SXM2-32GB True 128 3337 7
8 * RTX2080Ti False 1200
8 * RTX2080Ti

Employ ResNet50 as the backbone.

GPU FP16 BatchSize / it Throughput img / sec Time / hours
8 * Tesla V100-SXM2-32GB False 64 2745 9
8 * Tesla V100-SXM2-32GB True 64 3770 7
8 * Tesla V100-SXM2-32GB False 128 2833 9
8 * Tesla V100-SXM2-32GB True 128 5102 5

2. Train millions classes

TODO

How to run

cuda=10.1
pytorch==1.6.0
pip install -r requirement.txt

bash run.sh

使用 bash run.sh 这个命令运行。

Citation

If you find Partial-FC or Glint360K useful in your research, please consider to cite the following related paper:

Partial FC

@inproceedings{an2020partical_fc,
  title={Partial FC: Training 10 Million Identities on a Single Machine},
  author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
  Zhang, Debing and Fu Ying},
  booktitle={Arxiv 2010.05222},
  year={2020}
}