Files
insightface/challenges/iccv21-mfr/dataset_mask.py
2021-06-15 22:26:50 +08:00

209 lines
7.3 KiB
Python

import numbers
import os
import queue as Queue
import threading
import mxnet as mx
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import cv2
import albumentations as A
from albumentations.pytorch import ToTensorV2
from insightface.app import MaskAugmentation
class BackgroundGenerator(threading.Thread):
def __init__(self, generator, local_rank, max_prefetch=6):
super(BackgroundGenerator, self).__init__()
self.queue = Queue.Queue(max_prefetch)
self.generator = generator
self.local_rank = local_rank
self.daemon = True
self.start()
def run(self):
torch.cuda.set_device(self.local_rank)
for item in self.generator:
self.queue.put(item)
self.queue.put(None)
def next(self):
next_item = self.queue.get()
if next_item is None:
raise StopIteration
return next_item
def __next__(self):
return self.next()
def __iter__(self):
return self
class DataLoaderX(DataLoader):
def __init__(self, local_rank, **kwargs):
super(DataLoaderX, self).__init__(**kwargs)
self.stream = torch.cuda.Stream(local_rank)
self.local_rank = local_rank
def __iter__(self):
self.iter = super(DataLoaderX, self).__iter__()
self.iter = BackgroundGenerator(self.iter, self.local_rank)
self.preload()
return self
def preload(self):
self.batch = next(self.iter, None)
if self.batch is None:
return None
with torch.cuda.stream(self.stream):
for k in range(len(self.batch)):
self.batch[k] = self.batch[k].to(device=self.local_rank,
non_blocking=True)
def __next__(self):
torch.cuda.current_stream().wait_stream(self.stream)
batch = self.batch
if batch is None:
raise StopIteration
self.preload()
return batch
class MXFaceDataset(Dataset):
def __init__(self, root_dir, local_rank, aug_modes="brightness=0.1+mask=0.1"):
super(MXFaceDataset, self).__init__()
default_aug_probs = {
'brightness' : 0.2,
'blur': 0.1,
'mask': 0.1,
}
aug_mode_list = aug_modes.lower().split('+')
aug_mode_map = {}
for aug_mode_str in aug_mode_list:
_aug = aug_mode_str.split('=')
aug_key = _aug[0]
if len(_aug)>1:
aug_prob = float(_aug[1])
else:
aug_prob = default_aug_probs[aug_key]
aug_mode_map[aug_key] = aug_prob
transform_list = []
self.mask_aug = False
self.mask_prob = 0.0
key = 'mask'
if key in aug_mode_map:
self.mask_aug = True
self.mask_prob = aug_mode_map[key]
transform_list.append(
MaskAugmentation(mask_names=['mask_white', 'mask_blue', 'mask_black', 'mask_green'], mask_probs=[0.4, 0.4, 0.1, 0.1], h_low=0.33, h_high=0.4, p=self.mask_prob)
)
if local_rank==0:
print('data_transform_list:', transform_list)
print('mask:', self.mask_aug, self.mask_prob)
key = 'brightness'
if key in aug_mode_map:
prob = aug_mode_map[key]
transform_list.append(
A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=prob)
)
key = 'blur'
if key in aug_mode_map:
prob = aug_mode_map[key]
transform_list.append(
A.ImageCompression(quality_lower=30, quality_upper=80, p=prob)
)
transform_list.append(
A.MedianBlur(blur_limit=(1,7), p=prob)
)
transform_list.append(
A.MotionBlur(blur_limit=(5,12), p=prob)
)
transform_list += \
[
A.HorizontalFlip(p=0.5),
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
ToTensorV2(),
]
#here, the input for A transform is rgb cv2 img
self.transform = A.Compose(
transform_list
)
self.root_dir = root_dir
self.local_rank = local_rank
path_imgrec = os.path.join(root_dir, 'train.rec')
path_imgidx = os.path.join(root_dir, 'train.idx')
self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
s = self.imgrec.read_idx(0)
header, _ = mx.recordio.unpack(s)
#print(header)
#print(len(self.imgrec.keys))
if header.flag > 0:
if len(header.label)==2:
self.imgidx = np.array(range(1, int(header.label[0])))
else:
self.imgidx = np.array(list(self.imgrec.keys))
else:
self.imgidx = np.array(list(self.imgrec.keys))
#print('imgidx len:', len(self.imgidx))
def __getitem__(self, index):
idx = self.imgidx[index]
s = self.imgrec.read_idx(idx)
header, img = mx.recordio.unpack(s)
hlabel = header.label
#print('hlabel:', hlabel.__class__)
sample = mx.image.imdecode(img).asnumpy()
if not isinstance(hlabel, numbers.Number):
idlabel = hlabel[0]
else:
idlabel = hlabel
label = torch.tensor(idlabel, dtype=torch.long)
if self.transform is not None:
sample = self.transform(image=sample, hlabel=hlabel)['image']
return sample, label
def __len__(self):
return len(self.imgidx)
if __name__ == "__main__":
import argparse, cv2, copy
parser = argparse.ArgumentParser(description='dataset test')
parser.add_argument('--dataset', type=str, help='dataset path')
parser.add_argument('--samples', type=int, default=256, help='')
parser.add_argument('--cols', type=int, default=16, help='')
args = parser.parse_args()
assert args.samples%args.cols==0
assert args.cols%2==0
samples = args.samples
cols = args.cols
rows = args.samples // args.cols
dataset = MXFaceDataset(root_dir=args.dataset, local_rank=0, aug_modes='mask=1.0')
dataset.transform = A.Compose([t for t in dataset.transform if not isinstance(t, (A.Normalize, ToTensorV2))])
dataset_0 = copy.deepcopy(dataset)
#dataset_0.transform = None
dataset_1 = copy.deepcopy(dataset)
#dataset_1.transform = A.Compose(
# [
# A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=1.0),
# A.ImageCompression(quality_lower=30, quality_upper=80, p=1.0),
# A.MedianBlur(blur_limit=(1,7), p=1.0),
# A.MotionBlur(blur_limit=(5,12), p=1.0),
# A.Affine(scale=(0.92, 1.08), translate_percent=(-0.06, 0.06), rotate=(-6, 6), shear=None, interpolation=cv2.INTER_LINEAR, p=1.0),
# ]
#)
fig = np.zeros( (112*rows, 112*cols, 3), dtype=np.uint8 )
for idx in range(samples):
if idx%2==0:
image, _ = dataset_0[idx//2]
else:
image, _ = dataset_1[idx//2]
row_idx = idx // cols
col_idx = idx % cols
fig[row_idx*112:(row_idx+1)*112, col_idx*112:(col_idx+1)*112,:] = image[:,:,::-1] # to bgr
cv2.imwrite("./datasets.png", fig)