Files
insightface/recognition/arcface_paddle/test_tipc
2021-11-16 02:40:57 +00:00
..
2021-11-10 10:15:08 +00:00
2021-11-16 02:40:57 +00:00
2021-11-02 18:21:46 +00:00
2021-11-13 06:48:43 +00:00
2021-11-16 02:40:57 +00:00
2021-11-13 06:48:43 +00:00

飞桨训推一体认证

1. 简介

飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了 ArcFace 中所有 PaddlePaddle 模型的飞桨训推一体认证 (Training and Inference Pipeline Certification(TIPC)) 信息和测试工具,方便用户查阅每种模型的训练推理部署打通情况,并可以进行一键测试。

2. 汇总信息

打通情况汇总如下,已填写的部分表示可以使用本工具进行一键测试,未填写的表示正在支持中。

字段说明:

  • 基础训练预测包括模型训练、Paddle Inference Python预测。
  • 更多训练方式:包括多机多卡、混合精度。
  • 模型压缩:包括裁剪、离线/在线量化、蒸馏。
  • 其他预测部署包括Paddle Inference C++预测、Paddle Serving部署、Paddle-Lite部署等。

更详细的mkldnn、Tensorrt等预测加速相关功能的支持情况可以查看各测试工具的更多教程

算法论文 模型名称 模型类型 基础
训练预测
更多
训练方式
模型压缩 其他预测部署
ArcFace ms1mv2_mobileface 识别 支持 多机多卡 - Paddle Serving: Python

3. 一键测试工具使用

目录介绍

test_tipc/
├── configs/  # 配置文件目录
	├── ms1mv2_mobileface  # ms1mv2_mobileface 模型的测试配置文件目录
		├── model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt # 测试Linux上python serving预测的配置文件
		└── train_infer_python.txt # 测试Linux上python训练预测基础训练预测的配置文件
	├── ...  
├── data/ # 存放 TIPC 测试数据的目录
	├── small_dataset.tar # 用于训练的小数据集 (10张图片)
	├── small_lfw.bin # 用于评估的小数据集 (20张图片)
├── docs/ # 存放 TIPC 测试数据的目录
	├── install.md # 安装 TIPC 所需环境的文档
	├── test_train_inference_python.md # 测试Linux上python训练预测的文档
	├── test_serving.md # 测试Linux上python serving预测的文档
├── prepare.sh                        # 完成test_*.sh运行所需要的数据和模型下载
├── test_serving.sh    # 测试python训练预测的主程序
├── test_train_inference_python.sh    # 测试python训练预测的主程序
├── common_func.sh                    # 通用shell脚本函数
└── readme.md                         # TIPC使用文档

测试流程

使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下:

  1. 运行prepare.sh准备测试所需数据和模型
  2. 运行要测试的功能对应的测试脚本test_*.sh产出log由log可以看到不同配置是否运行成功

其中有1个测试主程序功能如下

  • test_train_inference_python.sh测试基于Python的模型训练、评估、推理等基本功能包括裁剪、量化、蒸馏。

更多教程

各功能测试中涉及混合精度、裁剪、量化等训练相关及mkldnn、Tensorrt等多种预测相关参数配置请点击下方相应链接了解更多细节和使用教程
test_train_inference_python 使用