mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
148 lines
5.5 KiB
Python
148 lines
5.5 KiB
Python
'''
|
|
Adapted from https://github.com/cavalleria/cavaface.pytorch/blob/master/backbone/mobilefacenet.py
|
|
Original author cavalleria
|
|
'''
|
|
|
|
import torch.nn as nn
|
|
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Sequential, Module
|
|
import torch
|
|
|
|
|
|
class Flatten(Module):
|
|
def forward(self, x):
|
|
return x.view(x.size(0), -1)
|
|
|
|
|
|
class ConvBlock(Module):
|
|
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
|
|
super(ConvBlock, self).__init__()
|
|
self.layers = nn.Sequential(
|
|
Conv2d(in_c, out_c, kernel, groups=groups, stride=stride, padding=padding, bias=False),
|
|
BatchNorm2d(num_features=out_c),
|
|
PReLU(num_parameters=out_c)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
|
|
class LinearBlock(Module):
|
|
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
|
|
super(LinearBlock, self).__init__()
|
|
self.layers = nn.Sequential(
|
|
Conv2d(in_c, out_c, kernel, stride, padding, groups=groups, bias=False),
|
|
BatchNorm2d(num_features=out_c)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
|
|
class DepthWise(Module):
|
|
def __init__(self, in_c, out_c, residual=False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1):
|
|
super(DepthWise, self).__init__()
|
|
self.residual = residual
|
|
self.layers = nn.Sequential(
|
|
ConvBlock(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1)),
|
|
ConvBlock(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride),
|
|
LinearBlock(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
|
|
)
|
|
|
|
def forward(self, x):
|
|
short_cut = None
|
|
if self.residual:
|
|
short_cut = x
|
|
x = self.layers(x)
|
|
if self.residual:
|
|
output = short_cut + x
|
|
else:
|
|
output = x
|
|
return output
|
|
|
|
|
|
class Residual(Module):
|
|
def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)):
|
|
super(Residual, self).__init__()
|
|
modules = []
|
|
for _ in range(num_block):
|
|
modules.append(DepthWise(c, c, True, kernel, stride, padding, groups))
|
|
self.layers = Sequential(*modules)
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
|
|
class GDC(Module):
|
|
def __init__(self, embedding_size):
|
|
super(GDC, self).__init__()
|
|
self.layers = nn.Sequential(
|
|
LinearBlock(512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0)),
|
|
Flatten(),
|
|
Linear(512, embedding_size, bias=False),
|
|
BatchNorm1d(embedding_size))
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
|
|
class MobileFaceNet(Module):
|
|
def __init__(self, fp16=False, num_features=512, blocks=(1, 4, 6, 2), scale=2):
|
|
super(MobileFaceNet, self).__init__()
|
|
self.scale = scale
|
|
self.fp16 = fp16
|
|
self.layers = nn.ModuleList()
|
|
self.layers.append(
|
|
ConvBlock(3, 64 * self.scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1))
|
|
)
|
|
if blocks[0] == 1:
|
|
self.layers.append(
|
|
ConvBlock(64 * self.scale, 64 * self.scale, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
|
|
)
|
|
else:
|
|
self.layers.append(
|
|
Residual(64 * self.scale, num_block=blocks[0], groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
|
)
|
|
|
|
self.layers.extend(
|
|
[
|
|
DepthWise(64 * self.scale, 64 * self.scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128),
|
|
Residual(64 * self.scale, num_block=blocks[1], groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
|
DepthWise(64 * self.scale, 128 * self.scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256),
|
|
Residual(128 * self.scale, num_block=blocks[2], groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
|
DepthWise(128 * self.scale, 128 * self.scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512),
|
|
Residual(128 * self.scale, num_block=blocks[3], groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
|
])
|
|
|
|
self.conv_sep = ConvBlock(128 * self.scale, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0))
|
|
self.features = GDC(num_features)
|
|
self._initialize_weights()
|
|
|
|
def _initialize_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def forward(self, x):
|
|
with torch.cuda.amp.autocast(self.fp16):
|
|
for func in self.layers:
|
|
x = func(x)
|
|
x = self.conv_sep(x.float() if self.fp16 else x)
|
|
x = self.features(x)
|
|
return x
|
|
|
|
|
|
def get_mbf(fp16, num_features, blocks=(1, 4, 6, 2), scale=2):
|
|
return MobileFaceNet(fp16, num_features, blocks, scale=scale)
|
|
|
|
def get_mbf_large(fp16, num_features, blocks=(2, 8, 12, 4), scale=4):
|
|
return MobileFaceNet(fp16, num_features, blocks, scale=scale)
|