Files
insightface/gender-age/train.py
2020-11-06 13:59:21 +08:00

421 lines
15 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import random
import logging
import pickle
import numpy as np
import sklearn
from data import FaceImageIter
import mxnet as mx
from mxnet import ndarray as nd
import argparse
import mxnet.optimizer as optimizer
sys.path.append(os.path.join(os.path.dirname(__file__), 'common'))
#import face_image
import fresnet
import fmobilenet
logger = logging.getLogger()
logger.setLevel(logging.INFO)
AGE = 100
args = None
class AccMetric(mx.metric.EvalMetric):
def __init__(self):
self.axis = 1
super(AccMetric, self).__init__('acc',
axis=self.axis,
output_names=None,
label_names=None)
self.losses = []
self.count = 0
def update(self, labels, preds):
self.count += 1
label = labels[0].asnumpy()[:, 0:1]
pred_label = preds[-1].asnumpy()[:, 0:2]
pred_label = np.argmax(pred_label, axis=self.axis)
pred_label = pred_label.astype('int32').flatten()
label = label.astype('int32').flatten()
assert label.shape == pred_label.shape
self.sum_metric += (pred_label.flat == label.flat).sum()
self.num_inst += len(pred_label.flat)
class LossValueMetric(mx.metric.EvalMetric):
def __init__(self):
self.axis = 1
super(LossValueMetric, self).__init__('lossvalue',
axis=self.axis,
output_names=None,
label_names=None)
self.losses = []
def update(self, labels, preds):
loss = preds[-1].asnumpy()[0]
self.sum_metric += loss
self.num_inst += 1.0
gt_label = preds[-2].asnumpy()
#print(gt_label)
class MAEMetric(mx.metric.EvalMetric):
def __init__(self):
self.axis = 1
super(MAEMetric, self).__init__('MAE',
axis=self.axis,
output_names=None,
label_names=None)
self.losses = []
self.count = 0
def update(self, labels, preds):
self.count += 1
label = labels[0].asnumpy()
label_age = np.count_nonzero(label[:, 1:], axis=1)
pred_age = np.zeros(label_age.shape, dtype=np.int)
#pred_age = np.zeros( label_age.shape, dtype=np.float32)
pred = preds[-1].asnumpy()
for i in range(AGE):
_pred = pred[:, 2 + i * 2:4 + i * 2]
_pred = np.argmax(_pred, axis=1)
#pred = pred[:,1]
pred_age += _pred
#pred_age = pred_age.astype(np.int)
mae = np.mean(np.abs(label_age - pred_age))
self.sum_metric += mae
self.num_inst += 1.0
class CUMMetric(mx.metric.EvalMetric):
def __init__(self, n=5):
self.axis = 1
self.n = n
super(CUMMetric, self).__init__('CUM_%d' % n,
axis=self.axis,
output_names=None,
label_names=None)
self.losses = []
self.count = 0
def update(self, labels, preds):
self.count += 1
label = labels[0].asnumpy()
label_age = np.count_nonzero(label[:, 1:], axis=1)
pred_age = np.zeros(label_age.shape, dtype=np.int)
pred = preds[-1].asnumpy()
for i in range(AGE):
_pred = pred[:, 2 + i * 2:4 + i * 2]
_pred = np.argmax(_pred, axis=1)
#pred = pred[:,1]
pred_age += _pred
diff = np.abs(label_age - pred_age)
cum = np.sum((diff < self.n))
self.sum_metric += cum
self.num_inst += len(label_age)
def parse_args():
parser = argparse.ArgumentParser(description='Train face network')
# general
parser.add_argument('--data-dir',
default='',
help='training set directory')
parser.add_argument('--prefix',
default='../model/model',
help='directory to save model.')
parser.add_argument('--pretrained',
default='',
help='pretrained model to load')
parser.add_argument(
'--ckpt',
type=int,
default=1,
help=
'checkpoint saving option. 0: discard saving. 1: save when necessary. 2: always save'
)
parser.add_argument('--loss-type', type=int, default=4, help='loss type')
parser.add_argument(
'--verbose',
type=int,
default=2000,
help='do verification testing and model saving every verbose batches')
parser.add_argument('--max-steps',
type=int,
default=0,
help='max training batches')
parser.add_argument('--end-epoch',
type=int,
default=100000,
help='training epoch size.')
parser.add_argument('--network', default='r50', help='specify network')
parser.add_argument('--image-size',
default='112,112',
help='specify input image height and width')
parser.add_argument('--version-input',
type=int,
default=1,
help='network input config')
parser.add_argument('--version-output',
type=str,
default='GAP',
help='network embedding output config')
parser.add_argument('--version-act',
type=str,
default='prelu',
help='network activation config')
parser.add_argument('--multiplier', type=float, default=1.0, help='')
parser.add_argument('--lr',
type=float,
default=0.1,
help='start learning rate')
parser.add_argument('--lr-steps',
type=str,
default='',
help='steps of lr changing')
parser.add_argument('--wd',
type=float,
default=0.0005,
help='weight decay')
parser.add_argument('--bn-mom', type=float, default=0.9, help='bn mom')
parser.add_argument('--mom', type=float, default=0.9, help='momentum')
parser.add_argument('--per-batch-size',
type=int,
default=128,
help='batch size in each context')
parser.add_argument('--rand-mirror',
type=int,
default=1,
help='if do random mirror in training')
parser.add_argument('--cutoff', type=int, default=0, help='cut off aug')
parser.add_argument('--color',
type=int,
default=0,
help='color jittering aug')
parser.add_argument('--ce-loss',
default=False,
action='store_true',
help='if output ce loss')
args = parser.parse_args()
return args
def get_symbol(args, arg_params, aux_params):
data_shape = (args.image_channel, args.image_h, args.image_w)
image_shape = ",".join([str(x) for x in data_shape])
margin_symbols = []
if args.network[0] == 'm':
fc1 = fmobilenet.get_symbol(AGE * 2 + 2,
multiplier=args.multiplier,
version_input=args.version_input,
version_output=args.version_output)
else:
fc1 = fresnet.get_symbol(AGE * 2 + 2,
args.num_layers,
version_input=args.version_input,
version_output=args.version_output)
label = mx.symbol.Variable('softmax_label')
gender_label = mx.symbol.slice_axis(data=label, axis=1, begin=0, end=1)
gender_label = mx.symbol.reshape(gender_label,
shape=(args.per_batch_size, ))
gender_fc1 = mx.symbol.slice_axis(data=fc1, axis=1, begin=0, end=2)
#gender_fc7 = mx.sym.FullyConnected(data=gender_fc1, num_hidden=2, name='gender_fc7')
gender_softmax = mx.symbol.SoftmaxOutput(data=gender_fc1,
label=gender_label,
name='gender_softmax',
normalization='valid',
use_ignore=True,
ignore_label=9999)
outs = [gender_softmax]
for i in range(AGE):
age_label = mx.symbol.slice_axis(data=label,
axis=1,
begin=i + 1,
end=i + 2)
age_label = mx.symbol.reshape(age_label, shape=(args.per_batch_size, ))
age_fc1 = mx.symbol.slice_axis(data=fc1,
axis=1,
begin=2 + i * 2,
end=4 + i * 2)
#age_fc7 = mx.sym.FullyConnected(data=age_fc1, num_hidden=2, name='age_fc7_%i'%i)
age_softmax = mx.symbol.SoftmaxOutput(data=age_fc1,
label=age_label,
name='age_softmax_%d' % i,
normalization='valid',
grad_scale=1)
outs.append(age_softmax)
outs.append(mx.sym.BlockGrad(fc1))
out = mx.symbol.Group(outs)
return (out, arg_params, aux_params)
def train_net(args):
ctx = []
cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip()
if len(cvd) > 0:
for i in range(len(cvd.split(','))):
ctx.append(mx.gpu(i))
if len(ctx) == 0:
ctx = [mx.cpu()]
print('use cpu')
else:
print('gpu num:', len(ctx))
prefix = args.prefix
prefix_dir = os.path.dirname(prefix)
if not os.path.exists(prefix_dir):
os.makedirs(prefix_dir)
end_epoch = args.end_epoch
args.ctx_num = len(ctx)
args.num_layers = int(args.network[1:])
print('num_layers', args.num_layers)
if args.per_batch_size == 0:
args.per_batch_size = 128
args.batch_size = args.per_batch_size * args.ctx_num
args.rescale_threshold = 0
args.image_channel = 3
data_dir_list = args.data_dir.split(',')
assert len(data_dir_list) == 1
data_dir = data_dir_list[0]
path_imgrec = None
path_imglist = None
image_size = [int(x) for x in args.image_size.split(',')]
assert len(image_size) == 2
assert image_size[0] == image_size[1]
args.image_h = image_size[0]
args.image_w = image_size[1]
print('image_size', image_size)
path_imgrec = os.path.join(data_dir, "train.rec")
path_imgrec_val = os.path.join(data_dir, "val.rec")
print('Called with argument:', args)
data_shape = (args.image_channel, image_size[0], image_size[1])
mean = None
begin_epoch = 0
base_lr = args.lr
base_wd = args.wd
base_mom = args.mom
if len(args.pretrained) == 0:
arg_params = None
aux_params = None
sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params)
else:
vec = args.pretrained.split(',')
print('loading', vec)
_, arg_params, aux_params = mx.model.load_checkpoint(
vec[0], int(vec[1]))
sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params)
#label_name = 'softmax_label'
#label_shape = (args.batch_size,)
model = mx.mod.Module(
context=ctx,
symbol=sym,
)
val_dataiter = None
train_dataiter = FaceImageIter(
batch_size=args.batch_size,
data_shape=data_shape,
path_imgrec=path_imgrec,
shuffle=True,
rand_mirror=args.rand_mirror,
mean=mean,
cutoff=args.cutoff,
color_jittering=args.color,
)
val_dataiter = FaceImageIter(
batch_size=args.batch_size,
data_shape=data_shape,
path_imgrec=path_imgrec_val,
shuffle=False,
rand_mirror=False,
mean=mean,
)
metric = mx.metric.CompositeEvalMetric(
[AccMetric(), MAEMetric(), CUMMetric()])
if args.network[0] == 'r' or args.network[0] == 'y':
initializer = mx.init.Xavier(rnd_type='gaussian',
factor_type="out",
magnitude=2) #resnet style
elif args.network[0] == 'i' or args.network[0] == 'x':
initializer = mx.init.Xavier(rnd_type='gaussian',
factor_type="in",
magnitude=2) #inception
else:
initializer = mx.init.Xavier(rnd_type='uniform',
factor_type="in",
magnitude=2)
_rescale = 1.0 / args.ctx_num
opt = optimizer.SGD(learning_rate=base_lr,
momentum=base_mom,
wd=base_wd,
rescale_grad=_rescale)
#opt = optimizer.Nadam(learning_rate=base_lr, wd=base_wd, rescale_grad=_rescale)
som = 20
_cb = mx.callback.Speedometer(args.batch_size, som)
lr_steps = [int(x) for x in args.lr_steps.split(',')]
global_step = [0]
def _batch_callback(param):
_cb(param)
global_step[0] += 1
mbatch = global_step[0]
for _lr in lr_steps:
if mbatch == _lr:
opt.lr *= 0.1
print('lr change to', opt.lr)
break
if mbatch % 1000 == 0:
print('lr-batch-epoch:', opt.lr, param.nbatch, param.epoch)
if mbatch == lr_steps[-1]:
arg, aux = model.get_params()
all_layers = model.symbol.get_internals()
_sym = all_layers['fc1_output']
mx.model.save_checkpoint(args.prefix, 0, _sym, arg, aux)
sys.exit(0)
epoch_cb = None
train_dataiter = mx.io.PrefetchingIter(train_dataiter)
print('start fitting')
model.fit(
train_dataiter,
begin_epoch=begin_epoch,
num_epoch=end_epoch,
eval_data=val_dataiter,
eval_metric=metric,
kvstore='device',
optimizer=opt,
#optimizer_params = optimizer_params,
initializer=initializer,
arg_params=arg_params,
aux_params=aux_params,
allow_missing=True,
batch_end_callback=_batch_callback,
epoch_end_callback=epoch_cb)
def main():
#time.sleep(3600*6.5)
global args
args = parse_args()
train_net(args)
if __name__ == '__main__':
main()