Files
insightface/recognition/arcface_paddle/utils/logging.py
2021-10-22 07:43:30 +00:00

94 lines
3.3 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import time
class AverageMeter(object):
"""Computes and stores the average and current value
"""
def __init__(self):
self.val = None
self.avg = None
self.sum = None
self.count = None
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def init_logging(rank, models_root):
if rank is 0:
log_root = logging.getLogger()
log_root.setLevel(logging.INFO)
formatter = logging.Formatter("Training: %(asctime)s - %(message)s")
handler_file = logging.FileHandler(
os.path.join(models_root, "training.log"))
handler_stream = logging.StreamHandler(sys.stdout)
handler_file.setFormatter(formatter)
handler_stream.setFormatter(formatter)
log_root.addHandler(handler_file)
log_root.addHandler(handler_stream)
log_root.info('rank: %d' % rank)
class CallBackLogging(object):
def __init__(self,
frequent,
rank,
world_size,
total_step,
batch_size,
writer=None):
self.frequent: int = frequent
self.rank: int = rank
self.world_size: int = world_size
self.time_start = time.time()
self.total_step: int = total_step
self.batch_size: int = batch_size
self.writer = writer
self.tic = time.time()
def __call__(self, global_step, loss: AverageMeter, epoch: int, lr_value, avg_reader_cost, avg_batch_cost, avg_samples, ips):
if self.rank is 0 and global_step > 0 and global_step % self.frequent == 0:
time_now = (time.time() - self.time_start) / 3600
time_total = time_now / ((global_step + 1) / self.total_step)
time_for_end = time_total - time_now
if self.writer is not None:
self.writer.add_scalar('time_for_end', time_for_end,
global_step)
self.writer.add_scalar('loss', loss.avg, global_step)
# ips is throughput
msg = "loss %.4f, lr: %f, epoch: %d, step: %d, eta: %1.2f hours, avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f images/sec" % (
loss.avg, lr_value, epoch, global_step, time_for_end,avg_reader_cost, avg_batch_cost, avg_samples, ips * self.world_size)
logging.info(msg)
loss.reset()
self.tic = time.time()