mirror of
https://github.com/deepinsight/insightface.git
synced 2025-12-30 08:02:27 +00:00
326 lines
12 KiB
Python
326 lines
12 KiB
Python
"""Helper for evaluation on the Labeled Faces in the Wild dataset
|
|
"""
|
|
|
|
# MIT License
|
|
#
|
|
# Copyright (c) 2016 David Sandberg
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import numpy as np
|
|
from scipy import misc
|
|
from sklearn.model_selection import KFold
|
|
from scipy import interpolate
|
|
import sklearn
|
|
from sklearn.decomposition import PCA
|
|
import mxnet as mx
|
|
from mxnet import ndarray as nd
|
|
|
|
|
|
def calculate_roc(thresholds,
|
|
embeddings1,
|
|
embeddings2,
|
|
actual_issame,
|
|
nrof_folds=10,
|
|
pca=0):
|
|
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
|
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
|
nrof_thresholds = len(thresholds)
|
|
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
|
|
|
|
tprs = np.zeros((nrof_folds, nrof_thresholds))
|
|
fprs = np.zeros((nrof_folds, nrof_thresholds))
|
|
accuracy = np.zeros((nrof_folds))
|
|
indices = np.arange(nrof_pairs)
|
|
#print('pca', pca)
|
|
|
|
if pca == 0:
|
|
diff = np.subtract(embeddings1, embeddings2)
|
|
dist = np.sum(np.square(diff), 1)
|
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
|
#print('train_set', train_set)
|
|
#print('test_set', test_set)
|
|
if pca > 0:
|
|
print('doing pca on', fold_idx)
|
|
embed1_train = embeddings1[train_set]
|
|
embed2_train = embeddings2[train_set]
|
|
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
|
|
#print(_embed_train.shape)
|
|
pca_model = PCA(n_components=pca)
|
|
pca_model.fit(_embed_train)
|
|
embed1 = pca_model.transform(embeddings1)
|
|
embed2 = pca_model.transform(embeddings2)
|
|
embed1 = sklearn.preprocessing.normalize(embed1)
|
|
embed2 = sklearn.preprocessing.normalize(embed2)
|
|
#print(embed1.shape, embed2.shape)
|
|
diff = np.subtract(embed1, embed2)
|
|
dist = np.sum(np.square(diff), 1)
|
|
|
|
# Find the best threshold for the fold
|
|
acc_train = np.zeros((nrof_thresholds))
|
|
for threshold_idx, threshold in enumerate(thresholds):
|
|
_, _, acc_train[threshold_idx] = calculate_accuracy(
|
|
threshold, dist[train_set], actual_issame[train_set])
|
|
best_threshold_index = np.argmax(acc_train)
|
|
for threshold_idx, threshold in enumerate(thresholds):
|
|
tprs[fold_idx,
|
|
threshold_idx], fprs[fold_idx,
|
|
threshold_idx], _ = calculate_accuracy(
|
|
threshold, dist[test_set],
|
|
actual_issame[test_set])
|
|
_, _, accuracy[fold_idx] = calculate_accuracy(
|
|
thresholds[best_threshold_index], dist[test_set],
|
|
actual_issame[test_set])
|
|
|
|
tpr = np.mean(tprs, 0)
|
|
fpr = np.mean(fprs, 0)
|
|
return tpr, fpr, accuracy
|
|
|
|
|
|
def calculate_accuracy(threshold, dist, actual_issame):
|
|
predict_issame = np.less(dist, threshold)
|
|
tp = np.sum(np.logical_and(predict_issame, actual_issame))
|
|
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
|
tn = np.sum(
|
|
np.logical_and(np.logical_not(predict_issame),
|
|
np.logical_not(actual_issame)))
|
|
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
|
|
|
|
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
|
|
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
|
|
acc = float(tp + tn) / dist.size
|
|
return tpr, fpr, acc
|
|
|
|
|
|
def calculate_val(thresholds,
|
|
embeddings1,
|
|
embeddings2,
|
|
actual_issame,
|
|
far_target,
|
|
nrof_folds=10):
|
|
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
|
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
|
nrof_thresholds = len(thresholds)
|
|
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
|
|
|
|
val = np.zeros(nrof_folds)
|
|
far = np.zeros(nrof_folds)
|
|
|
|
diff = np.subtract(embeddings1, embeddings2)
|
|
dist = np.sum(np.square(diff), 1)
|
|
indices = np.arange(nrof_pairs)
|
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
|
|
|
# Find the threshold that gives FAR = far_target
|
|
far_train = np.zeros(nrof_thresholds)
|
|
for threshold_idx, threshold in enumerate(thresholds):
|
|
_, far_train[threshold_idx] = calculate_val_far(
|
|
threshold, dist[train_set], actual_issame[train_set])
|
|
if np.max(far_train) >= far_target:
|
|
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
|
|
threshold = f(far_target)
|
|
else:
|
|
threshold = 0.0
|
|
|
|
val[fold_idx], far[fold_idx] = calculate_val_far(
|
|
threshold, dist[test_set], actual_issame[test_set])
|
|
|
|
val_mean = np.mean(val)
|
|
far_mean = np.mean(far)
|
|
val_std = np.std(val)
|
|
return val_mean, val_std, far_mean
|
|
|
|
|
|
def calculate_val_far(threshold, dist, actual_issame):
|
|
predict_issame = np.less(dist, threshold)
|
|
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
|
|
false_accept = np.sum(
|
|
np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
|
n_same = np.sum(actual_issame)
|
|
n_diff = np.sum(np.logical_not(actual_issame))
|
|
val = float(true_accept) / float(n_same)
|
|
far = float(false_accept) / float(n_diff)
|
|
return val, far
|
|
|
|
|
|
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
|
|
# Calculate evaluation metrics
|
|
thresholds = np.arange(0, 4, 0.01)
|
|
embeddings1 = embeddings[0::2]
|
|
embeddings2 = embeddings[1::2]
|
|
tpr, fpr, accuracy = calculate_roc(thresholds,
|
|
embeddings1,
|
|
embeddings2,
|
|
np.asarray(actual_issame),
|
|
nrof_folds=nrof_folds,
|
|
pca=pca)
|
|
thresholds = np.arange(0, 4, 0.001)
|
|
val, val_std, far = calculate_val(thresholds,
|
|
embeddings1,
|
|
embeddings2,
|
|
np.asarray(actual_issame),
|
|
1e-3,
|
|
nrof_folds=nrof_folds)
|
|
return tpr, fpr, accuracy, val, val_std, far
|
|
|
|
|
|
def get_paths(lfw_dir, pairs, file_ext):
|
|
nrof_skipped_pairs = 0
|
|
path_list = []
|
|
issame_list = []
|
|
for pair in pairs:
|
|
if len(pair) == 3:
|
|
path0 = os.path.join(
|
|
lfw_dir, pair[0],
|
|
pair[0] + '_' + '%04d' % int(pair[1]) + '.' + file_ext)
|
|
path1 = os.path.join(
|
|
lfw_dir, pair[0],
|
|
pair[0] + '_' + '%04d' % int(pair[2]) + '.' + file_ext)
|
|
issame = True
|
|
elif len(pair) == 4:
|
|
path0 = os.path.join(
|
|
lfw_dir, pair[0],
|
|
pair[0] + '_' + '%04d' % int(pair[1]) + '.' + file_ext)
|
|
path1 = os.path.join(
|
|
lfw_dir, pair[2],
|
|
pair[2] + '_' + '%04d' % int(pair[3]) + '.' + file_ext)
|
|
issame = False
|
|
if os.path.exists(path0) and os.path.exists(
|
|
path1): # Only add the pair if both paths exist
|
|
path_list += (path0, path1)
|
|
issame_list.append(issame)
|
|
else:
|
|
print('not exists', path0, path1)
|
|
nrof_skipped_pairs += 1
|
|
if nrof_skipped_pairs > 0:
|
|
print('Skipped %d image pairs' % nrof_skipped_pairs)
|
|
|
|
return path_list, issame_list
|
|
|
|
|
|
def read_pairs(pairs_filename):
|
|
pairs = []
|
|
with open(pairs_filename, 'r') as f:
|
|
for line in f.readlines()[1:]:
|
|
pair = line.strip().split()
|
|
pairs.append(pair)
|
|
return np.array(pairs)
|
|
|
|
|
|
def load_dataset(lfw_dir, image_size):
|
|
lfw_pairs = read_pairs(os.path.join(lfw_dir, 'pairs.txt'))
|
|
lfw_paths, issame_list = get_paths(lfw_dir, lfw_pairs, 'jpg')
|
|
lfw_data_list = []
|
|
for flip in [0, 1]:
|
|
lfw_data = nd.empty((len(lfw_paths), 3, image_size[0], image_size[1]))
|
|
lfw_data_list.append(lfw_data)
|
|
i = 0
|
|
for path in lfw_paths:
|
|
with open(path, 'rb') as fin:
|
|
_bin = fin.read()
|
|
img = mx.image.imdecode(_bin)
|
|
img = nd.transpose(img, axes=(2, 0, 1))
|
|
for flip in [0, 1]:
|
|
if flip == 1:
|
|
img = mx.ndarray.flip(data=img, axis=2)
|
|
lfw_data_list[flip][i][:] = img
|
|
i += 1
|
|
if i % 1000 == 0:
|
|
print('loading lfw', i)
|
|
print(lfw_data_list[0].shape)
|
|
print(lfw_data_list[1].shape)
|
|
return (lfw_data_list, issame_list)
|
|
|
|
|
|
def test(lfw_set, mx_model, batch_size):
|
|
print('testing lfw..')
|
|
lfw_data_list = lfw_set[0]
|
|
issame_list = lfw_set[1]
|
|
model = mx_model
|
|
embeddings_list = []
|
|
for i in range(len(lfw_data_list)):
|
|
lfw_data = lfw_data_list[i]
|
|
embeddings = None
|
|
ba = 0
|
|
while ba < lfw_data.shape[0]:
|
|
bb = min(ba + batch_size, lfw_data.shape[0])
|
|
_data = nd.slice_axis(lfw_data, axis=0, begin=ba, end=bb)
|
|
_label = nd.ones((bb - ba, ))
|
|
#print(_data.shape, _label.shape)
|
|
db = mx.io.DataBatch(data=(_data, ), label=(_label, ))
|
|
model.forward(db, is_train=False)
|
|
net_out = model.get_outputs()
|
|
#_arg, _aux = model.get_params()
|
|
#__arg = {}
|
|
#for k,v in _arg.iteritems():
|
|
# __arg[k] = v.as_in_context(_ctx)
|
|
#_arg = __arg
|
|
#_arg["data"] = _data.as_in_context(_ctx)
|
|
#_arg["softmax_label"] = _label.as_in_context(_ctx)
|
|
#for k,v in _arg.iteritems():
|
|
# print(k,v.context)
|
|
#exe = sym.bind(_ctx, _arg ,args_grad=None, grad_req="null", aux_states=_aux)
|
|
#exe.forward(is_train=False)
|
|
#net_out = exe.outputs
|
|
_embeddings = net_out[0].asnumpy()
|
|
#print(_embeddings.shape)
|
|
if embeddings is None:
|
|
embeddings = np.zeros(
|
|
(lfw_data.shape[0], _embeddings.shape[1]))
|
|
embeddings[ba:bb, :] = _embeddings
|
|
ba = bb
|
|
embeddings_list.append(embeddings)
|
|
|
|
_xnorm = 0.0
|
|
_xnorm_cnt = 0
|
|
for embed in embeddings_list:
|
|
for i in range(embed.shape[0]):
|
|
_em = embed[i]
|
|
_norm = np.linalg.norm(_em)
|
|
#print(_em.shape, _norm)
|
|
_xnorm += _norm
|
|
_xnorm_cnt += 1
|
|
_xnorm /= _xnorm_cnt
|
|
|
|
embeddings = embeddings_list[0].copy()
|
|
embeddings = sklearn.preprocessing.normalize(embeddings)
|
|
_, _, accuracy, val, val_std, far = evaluate(embeddings,
|
|
issame_list,
|
|
nrof_folds=10)
|
|
acc1, std1 = np.mean(accuracy), np.std(accuracy)
|
|
#print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
|
|
#embeddings = np.concatenate(embeddings_list, axis=1)
|
|
embeddings = embeddings_list[0] + embeddings_list[1]
|
|
embeddings = sklearn.preprocessing.normalize(embeddings)
|
|
print(embeddings.shape)
|
|
_, _, accuracy, val, val_std, far = evaluate(embeddings,
|
|
issame_list,
|
|
nrof_folds=10)
|
|
acc2, std2 = np.mean(accuracy), np.std(accuracy)
|
|
return acc1, std1, acc2, std2, _xnorm, embeddings_list
|