Files
insightface/recognition/partial_fc/mxnet/image_iter.py
2020-11-06 13:59:21 +08:00

349 lines
12 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import logging
import sys
import numbers
import math
import datetime
import numpy as np
import cv2
import mxnet as mx
from mxnet import ndarray as nd
from mxnet import io
from mxnet import recordio
logger = logging.getLogger()
class FaceImageIter(io.DataIter):
def __init__(self,
batch_size,
data_shape,
path_imgrec=None,
shuffle=False,
aug_list=None,
mean=None,
rand_mirror=False,
cutoff=0,
color_jittering=0,
images_filter=0,
data_name='data',
label_name='softmax_label',
context=0,
context_num=1,
**kwargs):
super(FaceImageIter, self).__init__()
assert path_imgrec
self.context = context
self.context_num = context_num
if path_imgrec:
logging.info('loading recordio %s...', path_imgrec)
path_imgidx = path_imgrec[0:-4] + ".idx"
self.imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec,
'r')
s = self.imgrec.read_idx(0)
header, _ = recordio.unpack(s)
if header.flag > 0:
self.header0 = (int(header.label[0]), int(header.label[1]))
self.imgidx = []
self.id2range = {}
self.seq_identity = range(int(header.label[0]),
int(header.label[1]))
for identity in self.seq_identity:
s = self.imgrec.read_idx(identity)
header, _ = recordio.unpack(s)
a, b = int(header.label[0]), int(header.label[1])
count = b - a
if count < images_filter:
continue
self.id2range[identity] = (a, b)
self.imgidx += range(a, b)
self_data_lenth = len(self.imgidx)
else:
self.imgidx = list(self.imgrec.keys)
if shuffle:
self.seq = self.imgidx
self.oseq = self.imgidx
else:
self.seq = None
self.mean = mean
self.nd_mean = None
self.epoch = 0
if self.mean:
self.mean = np.array(self.mean, dtype=np.float32).reshape(1, 1, 3)
self.nd_mean = mx.nd.array(self.mean).reshape((1, 1, 3))
self.check_data_shape(data_shape)
self.provide_data = [(data_name, (batch_size, ) + data_shape)]
self.batch_size = batch_size
self.data_shape = data_shape
self.shuffle = shuffle
self.image_size = '%d,%d' % (data_shape[1], data_shape[2])
self.rand_mirror = rand_mirror
self.cutoff = cutoff
self.color_jittering = color_jittering
self.CJA = mx.image.ColorJitterAug(0.125, 0.125, 0.125)
self.provide_label = [(label_name, (batch_size, ))]
self.cur = 0
self.nbatch = 0
self.is_init = False
self.num_samples_per_gpu = int(
math.floor(len(self.seq) * 1.0 / self.context_num))
def reset(self):
"""Resets the iterator to the beginning of the data."""
self.epoch += 1
self.cur = 0
if self.shuffle:
random.seed(self.epoch)
random.shuffle(self.seq)
if self.seq is None and self.imgrec is not None:
self.imgrec.reset()
def num_samples(self):
return len(self.seq)
def next_sample(self):
if self.seq is not None:
while True:
if self.cur >= self.num_samples_per_gpu:
raise StopIteration
idx = self.seq[self.num_samples_per_gpu * self.context +
self.cur]
self.cur += 1
if self.imgrec is not None:
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
label = header.label
if not isinstance(label, numbers.Number):
label = label[0]
return int(label), img, None, None
else:
label, fname, bbox, landmark = self.imglist[idx]
return label, self.read_image(fname), bbox, landmark
else:
s = self.imgrec.read()
if s is None:
raise StopIteration
header, img = recordio.unpack(s)
return header.label, img, None, None
def brightness_aug(self, src, x):
alpha = 1.0 + random.uniform(-x, x)
src *= alpha
return src
def contrast_aug(self, src, x):
alpha = 1.0 + random.uniform(-x, x)
coef = nd.array([[[0.299, 0.587, 0.114]]])
gray = src * coef
gray = (3.0 * (1.0 - alpha) / gray.size) * nd.sum(gray)
src *= alpha
src += gray
return src
def saturation_aug(self, src, x):
alpha = 1.0 + random.uniform(-x, x)
coef = nd.array([[[0.299, 0.587, 0.114]]])
gray = src * coef
gray = nd.sum(gray, axis=2, keepdims=True)
gray *= (1.0 - alpha)
src *= alpha
src += gray
return src
def color_aug(self, img, x):
return self.CJA(img)
def mirror_aug(self, img):
_rd = random.randint(0, 1)
if _rd == 1:
for c in range(img.shape[2]):
img[:, :, c] = np.fliplr(img[:, :, c])
return img
def compress_aug(self, img):
from PIL import Image
from io import BytesIO
buf = BytesIO()
img = Image.fromarray(img.asnumpy(), 'RGB')
q = random.randint(2, 20)
img.save(buf, format='JPEG', quality=q)
buf = buf.getvalue()
img = Image.open(BytesIO(buf))
return nd.array(np.asarray(img, 'float32'))
def next(self):
if not self.is_init:
self.reset()
self.is_init = True
"""Returns the next batch of data."""
# print('in next', self.cur, self.labelcur)
self.nbatch += 1
batch_size = self.batch_size
c, h, w = self.data_shape
batch_data = nd.empty((batch_size, c, h, w))
if self.provide_label is not None:
batch_label = nd.empty(self.provide_label[0][1])
i = 0
try:
while i < batch_size:
label, s, bbox, landmark = self.next_sample()
_data = self.imdecode(s)
if _data.shape[0] != self.data_shape[1]:
_data = mx.image.resize_short(_data, self.data_shape[1])
if self.rand_mirror:
_rd = random.randint(0, 1)
if _rd == 1:
_data = mx.ndarray.flip(data=_data, axis=1)
if self.color_jittering > 0:
if self.color_jittering > 1:
_rd = random.randint(0, 1)
if _rd == 1:
_data = self.compress_aug(_data)
# print('do color aug')
_data = _data.astype('float32', copy=False)
# print(_data.__class__)
_data = self.color_aug(_data, 0.125)
if self.nd_mean is not None:
_data = _data.astype('float32', copy=False)
_data -= self.nd_mean
_data *= 0.0078125
if self.cutoff > 0:
_rd = random.randint(0, 1)
if _rd == 1:
# print('do cutoff aug', self.cutoff)
centerh = random.randint(0, _data.shape[0] - 1)
centerw = random.randint(0, _data.shape[1] - 1)
half = self.cutoff // 2
starth = max(0, centerh - half)
endh = min(_data.shape[0], centerh + half)
startw = max(0, centerw - half)
endw = min(_data.shape[1], centerw + half)
# print(starth, endh, startw, endw, _data.shape)
_data[starth:endh, startw:endw, :] = 128
data = [_data]
try:
self.check_valid_image(data)
except RuntimeError as e:
logging.debug('Invalid image, skipping: %s', str(e))
continue
# print('aa',data[0].shape)
# data = self.augmentation_transform(data)
# print('bb',data[0].shape)
for datum in data:
assert i < batch_size, 'Batch size must be multiples of augmenter output length'
# print(datum.shape)
batch_data[i][:] = self.postprocess_data(datum)
batch_label[i][:] = label
i += 1
except StopIteration:
if i < batch_size:
raise StopIteration
return io.DataBatch([batch_data], [batch_label], batch_size - i)
def check_data_shape(self, data_shape):
"""Checks if the input data shape is valid"""
if not len(data_shape) == 3:
raise ValueError(
'data_shape should have length 3, with dimensions CxHxW')
if not data_shape[0] == 3:
raise ValueError(
'This iterator expects inputs to have 3 channels.')
def check_valid_image(self, data):
"""Checks if the input data is valid"""
if len(data[0].shape) == 0:
raise RuntimeError('Data shape is wrong')
def imdecode(self, s):
"""Decodes a string or byte string to an NDArray.
See mx.img.imdecode for more details."""
img = mx.image.imdecode(s) # mx.ndarray
return img
def read_image(self, fname):
"""Reads an input image `fname` and returns the decoded raw bytes.
Example usage:
----------
>>> dataIter.read_image('Face.jpg') # returns decoded raw bytes.
"""
with open(os.path.join(self.path_root, fname), 'rb') as fin:
img = fin.read()
return img
def augmentation_transform(self, data):
"""Transforms input data with specified augmentation."""
for aug in self.auglist:
data = [ret for src in data for ret in aug(src)]
return data
def postprocess_data(self, datum):
"""Final postprocessing step before image is loaded into the batch."""
return nd.transpose(datum, axes=(2, 0, 1))
class FaceImageIterList(io.DataIter):
def __init__(self, iter_list):
assert len(iter_list) > 0
self.provide_data = iter_list[0].provide_data
self.provide_label = iter_list[0].provide_label
self.iter_list = iter_list
self.cur_iter = None
def reset(self):
self.cur_iter.reset()
def next(self):
self.cur_iter = random.choice(self.iter_list)
while True:
try:
ret = self.cur_iter.next()
except StopIteration:
self.cur_iter.reset()
continue
return ret
# dummy
class DummyIter(mx.io.DataIter):
def __init__(self,
batch_size,
data_shape,
batches=1000,
mode='',
dtype='float32'):
super(DummyIter, self).__init__(batch_size)
self.data_shape = (batch_size, ) + data_shape
self.label_shape = (batch_size, )
self.provide_data = [('data', self.data_shape)]
self.provide_label = [('softmax_label', self.label_shape)]
# self.provide_label = [('label', self.label_shape)]
# if mode == 'perseus':
# self.provide_label = []
self.batch = mx.io.DataBatch(
data=[mx.nd.zeros(self.data_shape, dtype=dtype)],
label=[mx.nd.zeros(self.label_shape, dtype=dtype)])
self._batches = 0
self.batches = batches
def next(self):
if self._batches < self.batches:
self._batches += 1
return self.batch
else:
self._batches = 0
raise StopIteration