Files
insightface/recognition/arcface_paddle/dynamic/backbones/mobilefacenet.py
2021-10-14 19:05:59 +08:00

163 lines
5.0 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
import math
__all__ = ['MobileFaceNet_128']
MobileFaceNet_BottleNeck_Setting = [
# t, c , n ,s
[2, 64, 5, 2],
[4, 128, 1, 2],
[2, 128, 6, 1],
[4, 128, 1, 2],
[2, 128, 2, 1]
]
class BottleNeck(nn.Layer):
def __init__(self, inp, oup, stride, expansion):
super().__init__()
self.connect = stride == 1 and inp == oup
self.conv = nn.Sequential(
# 1*1 conv
nn.Conv2D(
inp, inp * expansion, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(inp * expansion),
nn.PReLU(inp * expansion),
# 3*3 depth wise conv
nn.Conv2D(
inp * expansion,
inp * expansion,
3,
stride,
1,
groups=inp * expansion,
bias_attr=False),
nn.BatchNorm2D(inp * expansion),
nn.PReLU(inp * expansion),
# 1*1 conv
nn.Conv2D(
inp * expansion, oup, 1, 1, 0, bias_attr=False),
nn.BatchNorm2D(oup), )
def forward(self, x):
if self.connect:
return x + self.conv(x)
else:
return self.conv(x)
class ConvBlock(nn.Layer):
def __init__(self, inp, oup, k, s, p, dw=False, linear=False):
super().__init__()
self.linear = linear
if dw:
self.conv = nn.Conv2D(
inp, oup, k, s, p, groups=inp, bias_attr=False)
else:
self.conv = nn.Conv2D(inp, oup, k, s, p, bias_attr=False)
self.bn = nn.BatchNorm2D(oup)
if not linear:
self.prelu = nn.PReLU(oup)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.linear:
return x
else:
return self.prelu(x)
class MobileFaceNet(nn.Layer):
def __init__(self,
feature_dim=128,
bottleneck_setting=MobileFaceNet_BottleNeck_Setting,
**args):
super().__init__()
self.conv1 = ConvBlock(3, 64, 3, 2, 1)
self.dw_conv1 = ConvBlock(64, 64, 3, 1, 1, dw=True)
self.cur_channel = 64
block = BottleNeck
self.blocks = self._make_layer(block, bottleneck_setting)
self.conv2 = ConvBlock(128, 512, 1, 1, 0)
self.linear7 = ConvBlock(512, 512, 7, 1, 0, dw=True, linear=True)
self.linear1 = ConvBlock(512, feature_dim, 1, 1, 0, linear=True)
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
# ks * ks * out_ch
n = m.weight.shape[1] * m.weight.shape[2] * m.weight.shape[3]
m.weight = paddle.create_parameter(
shape=m.weight.shape,
dtype=m.weight.dtype,
default_initializer=nn.initializer.Normal(
mean=0.0, std=math.sqrt(2.0 / n)))
elif isinstance(m, (nn.BatchNorm, nn.BatchNorm2D, nn.GroupNorm)):
m.weight = paddle.create_parameter(
shape=m.weight.shape,
dtype=m.weight.dtype,
default_initializer=nn.initializer.Constant(value=1.0))
m.bias = paddle.create_parameter(
shape=m.bias.shape,
dtype=m.bias.dtype,
default_initializer=nn.initializer.Constant(value=0.0))
def _make_layer(self, block, setting):
layers = []
for t, c, n, s in setting:
for i in range(n):
if i == 0:
layers.append(block(self.cur_channel, c, s, t))
else:
layers.append(block(self.cur_channel, c, 1, t))
self.cur_channel = c
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.dw_conv1(x)
x = self.blocks(x)
x = self.conv2(x)
x = self.linear7(x)
x = self.linear1(x)
x = x.reshape([x.shape[0], x.shape[1] * x.shape[2] * x.shape[3]])
return x
def MobileFaceNet_128(num_features=128, **args):
model = MobileFaceNet(feature_dim=num_features, **args)
return model
# if __name__ == "__main__":
# paddle.set_device("cpu")
# x = paddle.rand([2, 3, 112, 112])
# net = MobileFaceNet()
# print(net)
# x = net(x)
# print(x.shape)