Files
insightface/recognition/arcface_paddle/dynamic/classifiers/lsc.py
2021-10-14 19:05:59 +08:00

164 lines
6.0 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
import math
import os
import paddle
import paddle.nn as nn
class LargeScaleClassifier(nn.Layer):
"""
Author: {Xiang An, Yang Xiao, XuHan Zhu} in DeepGlint,
Partial FC: Training 10 Million Identities on a Single Machine
See the original paper:
https://arxiv.org/abs/2010.05222
"""
@paddle.no_grad()
def __init__(self,
rank,
world_size,
num_classes,
margin1=1.0,
margin2=0.5,
margin3=0.0,
scale=64.0,
sample_ratio=1.0,
embedding_size=512,
fp16=False,
name=None):
super(LargeScaleClassifier, self).__init__()
self.num_classes: int = num_classes
self.rank: int = rank
self.world_size: int = world_size
self.sample_ratio: float = sample_ratio
self.embedding_size: int = embedding_size
self.fp16 = fp16
self.num_local: int = (num_classes + world_size - 1) // world_size
if num_classes % world_size != 0 and rank == world_size - 1:
self.num_local = num_classes % self.num_local
self.num_sample: int = int(self.sample_ratio * self.num_local)
self.margin1 = margin1
self.margin2 = margin2
self.margin3 = margin3
self.logit_scale = scale
self._parameter_list = []
if name is None:
name = 'dist@fc@rank@%05d.w' % rank
stddev = math.sqrt(2.0 / (self.embedding_size + self.num_local))
param_attr = paddle.ParamAttr(
name=name, initializer=paddle.nn.initializer.Normal(std=stddev))
self.index = None
self.weight = self.create_parameter(
shape=[self.embedding_size, self.num_local],
attr=param_attr,
is_bias=False,
dtype='float16' if self.fp16 else 'float32')
self.weight.is_distributed = True
if int(self.sample_ratio) < 1:
self.weight.stop_gradient = True
def step(self, optimizer):
if int(self.sample_ratio) < 1:
warnings.warn(
"Explicitly call the function paddle._C_ops.sparse_momentum is a temporary manner. "
"We will merge it to optimizer in the future, please don't follow.")
found_inf = paddle.logical_not(
paddle.all(paddle.isfinite(self._parameter_list[0].grad)))
if found_inf:
print('Found inf or nan in classifier')
else:
if self.weight.name not in optimizer._accumulators[
optimizer._velocity_acc_str]:
optimizer._add_accumulator(optimizer._velocity_acc_str,
self.weight)
velocity = optimizer._accumulators[
optimizer._velocity_acc_str][self.weight.name]
_, _ = paddle._C_ops.sparse_momentum(
self.weight,
self._parameter_list[0].grad,
velocity,
self.index,
paddle.to_tensor(
optimizer.get_lr(), dtype='float32'),
self.weight,
velocity,
'mu',
optimizer._momentum,
'use_nesterov',
optimizer._use_nesterov,
'regularization_method',
optimizer._regularization_method,
'regularization_coeff',
optimizer._regularization_coeff,
'axis',
1)
def clear_grad(self):
self._parameter_list = []
def forward(self, feature, label):
if self.world_size > 1:
feature_list = []
paddle.distributed.all_gather(feature_list, feature)
total_feature = paddle.concat(feature_list, axis=0)
label_list = []
paddle.distributed.all_gather(label_list, label)
total_label = paddle.concat(label_list, axis=0)
total_label.stop_gradient = True
else:
total_feature = feature
total_label = label
if self.sample_ratio < 1.0:
# partial fc sample process
total_label, self.index = paddle.nn.functional.class_center_sample(
total_label, self.num_local, self.num_sample)
total_label.stop_gradient = True
self.index.stop_gradient = True
self.sub_weight = paddle.gather(self.weight, self.index, axis=1)
self.sub_weight.stop_gradient = False
self._parameter_list.append(self.sub_weight)
else:
self.sub_weight = self.weight
norm_feature = paddle.fluid.layers.l2_normalize(total_feature, axis=1)
norm_weight = paddle.fluid.layers.l2_normalize(self.sub_weight, axis=0)
local_logit = paddle.matmul(norm_feature, norm_weight)
loss = paddle.nn.functional.margin_cross_entropy(
local_logit,
total_label,
margin1=self.margin1,
margin2=self.margin2,
margin3=self.margin3,
scale=self.logit_scale,
return_softmax=False,
reduction=None, )
loss = paddle.mean(loss)
return loss